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Abstract

Background: It is commonly reported that children with autism spectrum disorder (ASD) exhibit hyper-reactivity or
hypo-reactivity to sensory stimuli. Electroencephalography (EEG) is commonly used to study neural sensory reactivity,
suggesting that statistical analysis of EEG recordings is a potential means of automatic classification of the disorder. EEG
recordings taken from children, however, are frequently contaminated with large amounts of noise, making analysis
difficult. In this paper, we present a method for the automatic extraction of noise-robust EEG features, which serve to
quantify neural sensory reactivity. We show the efficacy of a system for the classification of ASD using these features.

Methods: An oddball paradigm was used to elicit event-related potentials from a group of 19 ASD children and 30
typically developing children. EEG recordings were taken and robust features were extracted. A support vector
machine, logistic regression, and a naive Bayes classifier were used to classify the children as having ASD or being
typically developing.

Results: A classification accuracy of 79% was achieved, making our method competitive with other automatic
diagnosis methods based on EEG. Additionally, we found that classification performance is reduced if eye blink
artifacts are removed during preprocessing.

Conclusions: This study shows that robust EEG features that quantify neural sensory reactivity are useful for the
classification of ASD. We showed that noise-robust features are crucial for our analysis, and observe that traditional
preprocessing methods may lead to poor classification performance in the face of a large amount of noise. Further
exploration of alternative preprocessing methods is warranted.
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Background
Autism spectrum disorder (ASD) is a lifelong neurode-
velopmental disorder of increasing prevalence and com-
munity concern [1]. Individuals with ASD experience
difficulties with social communication and their behav-
ior is often stereotypic and repetitive. The symptoms of
the disorder vary in severity between individuals but may
necessitate support services to facilitate social engage-
ment, classroom learning and independent living in adult-
hood [2]. It is commonly reported that children with
ASD exhibit hyper-reactivity or hypo-reactivity to sen-
sory stimuli [3]. In particular, children with ASD have
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been known to display extreme distress to loud or unex-
pected noises, or to under-react by failing to orient to their
name or respond to painful stimuli [4-6]. Recently, parent-
reported behaviors associated with sensory reactivity have
been successfully used to classify meaningful subgroups
of children with ASD [7-9]. Such reports suggest that
electrophysiological measurements of sensory reactivity
may be a useful biomarker for ASD classification in
children.
Event-related potentials (ERPs) are used to examine

the sensory function of children with ASD, particu-
larly in the auditory domain [10,11]. ERPs are observed
using electroencephalogram (EEG) recordings of stimuli-
driven changes over time in the electrical activity of
the cortex of the brain. ERPs can be measured using
the polarity, amplitude, latency, and scalp distribution
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of the potentials due to neural activation. Paradigms
for ERP studies vary depending on the sensory modal-
ity and mechanism of impairment of interest. A com-
mon paradigm used in the ASD ERP literature is the
oddball paradigm [10]. This paradigm, in which a ‘stan-
dard’ stimulus is presented most of the time (e.g. 85%)
and a ‘deviant’ or ‘novel’ stimulus is presented less fre-
quently (e.g. 15%), is employed when investigating sensory
novelty discrimination and may be considered a mea-
sure of neural sensory reactivity. A number of authors
have reported differences in the ERP profiles of individ-
uals with ASD compared with typically developing (TD)
controls in response to an auditory oddball paradigm.
Specifically, for more complex auditory stimuli such as
speech sounds, individuals with ASD are observed to
display delayed or absent orientation to novel stimuli.
Attenuated responses are noted both in early auditory
processing (vis-à-vis brainstem responses) and later pro-
cessing (vis-à-vis mismatch negativity, P3) [10,11]. It is
hypothesized that these differences may underlie behav-
ioral deficits in ASD including non-attention to name
being called (due to attenuated responses to speech
stimuli) and social communication impairments (due to
failure to integrate and attend to higher level speech
stimuli). Measurement by EEG, however, is an inher-
ently noisy process, which is made worse by the artifacts
introduced by young subjects and those with functional
difficulties such as those commonly observed in ASD.
Attempts to classify individuals with ASD using EEG
data are hampered by the abundance of noise in the
recordings.
Much of the recent work in the classification of ASD

from EEG data has focused on the spectral coherence
of EEG signals. Spectral coherence measures the consis-
tency of the phase difference between two EEG signals
over time [12]. Numerous studies have shown signifi-
cant differences in coherence between ASD and typical
subjects [13-15]. A recent study by Duffy and Als [12]
involving a large sample of 1,304 subjects aged 1 through
18 years demonstrated high classification accuracy when
spectral coherence features were used. High classifica-
tion rates of around 90% persisted when the sample was
limited to smaller age ranges. Similarly, Bosl et al. [16]
used machine-learning methods to classify EEG signals as
either ASD or typical. The study used the modified multi-
scale entropy of the EEG signal to measure the non-linear
complexity of brain activity. A high classification accu-
racy (70 to 90%) of boys with ASD was demonstrated,
with near perfect accuracy obtained for boys aged 9
months.
Much of the recent literature involving EEG studies

takes a traditional approach to artifact rejection, in which
data is removed on a per epoch basis. The textbook by
Luck [17] lists several common measures used to reject

epochs, including simple threshold rejection in which an
epoch is removed if it contains data outside of a spec-
ified range. With such methods, the researcher must
carefully choose a rejection criterion: making the crite-
rion too strict will result in many non-artifacts being
removed from the data, while being too lenient will
leave much of the noise intact [18]. A common crite-
rion used to judge the viability of an epoch asserts that
all channels be artifact free. As the number of electrodes
in the sensor array increases, so does the probability
of rejecting an epoch on any given channel. Junghöfer
et al. [19] recognized this phenomenon and proposed a
statistical approach to artifact rejection, in which arti-
factual sensors are interpolated rather than discarded to
retain the maximum amount of data in the presence of
noise.
It is also standard practice to remove certain types of

artifacts, such as those introduced by eye blinks, using
blind source separation by independent component anal-
ysis (ICA) [20]. In this approach, it is assumed that the
data recorded at each of the N electrodes is a linear com-
bination of N independent sources. The goal of ICA is
to ‘unmix’ the data recorded at the electrodes into the
temporally independent source components. Ideally, one
or several of these components will correspond to eye
blink events. Such components can be identified by strong
activity at the periocular electrode sites. Eye blink removal
is accomplished by removing these components from the
data. Previous literature, however, has identified that eye
blink rate is a marker of central dopaminergic activity
with links to general arousal levels [21], and one study
has reported that eye blink rate is elevated in autism [22].
Further, increased eye blink rate is associated with anx-
iety and engagement in speech and memory tasks [21].
Reduced eye blink rates have been observed in attention
deficit hyperactivity disorder and intellectual disability
[21-23]. Removal of eye blink data as recommended in
standard artifact rejection processes, therefore, may inad-
vertently conceal a salient marker of neural differences
specific to ASD.
The aims of the study were twofold. First, we developed

a novel approach to the generation of EEG features use-
ful for the classification of ASD in young children where
the degree of noise is substantial. Two aspects of this
approach are emphasized: 1) the rejection of artifactual
data in the face of extreme noise and 2) the construction
of robust features. We propose an amendment to the tra-
ditional artifact removal pipeline that allows for the reten-
tion of greater amounts of data while using comparatively
strict rejection criteria. Second, we tested an automated
classification framework based on the robust features
developed for the first aim and assessed the accuracy
of the framework against other recently reported meth-
ods. We evaluated the performance of this classification
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framework in two conditions: with and without eye blink
data.

Methods
Participants
Participants for the study were children aged 6 to 10 years
with a diagnosis of ASD (n = 19) and TD same-aged
peers (n = 30). Inclusion criteria for the ASD partici-
pants were: 1) ASD diagnosis had beenmade by a qualified
practitioner using standard diagnostic measures; 2) par-
ticipant was able to cooperate with all study procedures;
3) hearing and middle ear function was assessed as intact
(described below); and 4) no history of other neurological
or seizure disorder. Where possible, all ASD participants
were further assessed by members of the research team to
ascertain ASD symptom severity using standard measures
(described below). ASD symptom severity data for three
ASD participants were unavailable due to non-attendance
at the scheduled clinical evaluation appointment. Inclu-
sion criteria for the TD participants were that: 1) partic-
ipant was able to cooperate with all study procedures; 2)
hearing and middle ear function was assessed as intact
(see below); and 3) participant had no history of language
delay, learning disability, or neurological, seizure or audi-
tory processing disorder. ASD participants were recruited
to the study via flyers and announcements distributed
through parent and professional networks, autism clin-
ics and schools in the Central Ohio area, and private
therapy practices. Typically developing participants were
recruited via ResearchMatch, a web-based volunteer reg-
istry [24], broadcast emails to faculty and staff at The
Ohio State University, and personal contacts. Approvals
for this project were gained from the Institutional Review
Board at The Ohio State University, protocol number
2009B0418. Table 1 details the characteristics of the par-
ticipants included in the study.

Table 1 Participant characteristics

Group n Mean age in Gender ASD symptom severity
years (SD)

ASD 19 8.46 (1.3) M = 16, F = 3 ADOS (n = 13):

Mean CSS = 6.23 (SD = 2.31)

CARS Severity Rating (n = 6):

Non-autistic: n = 1

Mild/moderate: n = 2

Severe: n = 3

TD 30 8.17 (1.26) M = 15, F = 15 N/A

Two participants received both the CARS and ADOS; two participants did not
receive either the CARS or ADOS. ADOS, Autism Diagnostic Observation
Schedule; ASD, autism spectrum disorder; CARS, Childhood Autism Rating Scale
(second edition); CSS, Calibrated Severity Score; N/A, not applicable; SD,
standard deviation; TD, typically developing.

Procedure
Participants in the study were involved in a larger study
examining the neural profiles of children with ASD clas-
sified using parent-reported sensory features. ASD symp-
toms were assessed in our study using either the Autism
Diagnostic Observation Schedule (ADOS) [25] or the
Childhood Autism Rating Scale (second edition) (CARS2)
[26]. The ADOS was administered by a qualified clinical
psychologist to characterize ASD symptoms. Four differ-
ent modules of the ADOS are available for use depending
on the expressive language skills of the child. Modules 1
to 3 were used for this study; these modules consist of 10
to 14 guided activities in which the child’s behaviors are
observed in response to a particular scenario or staged
task (e.g. free play, bubble play, snack and anticipation
of a social routine). A detailed behavioral coding guide
is then provided for completion based on observations
made throughout the entire evaluation. Behaviors coded
relate to the core diagnostic criteria for ASD including
language and communication, reciprocal social interac-
tion, play, stereotyped behaviors, restricted interests and
other abnormal behaviors. Behaviors are rated on a scale
of 0 to 3 based on the rate and intensity of the behav-
ior observed. Cut-off scores are provided in the ADOS
to determine the likelihood that the child has an ASD. In
this study, the Calibrated Severity Score (CSS) was used to
determine ASD symptom severity.
The CARS2 was administered by the second author

to participants who were unable to attend an ADOS
session. The CARS2 is a 15-item behavior rating scale,
which is used to diagnose and differentiate children
with ASD from TD children and other developmen-
tally disabled children. Behavioral items assessed by the
CARS2 include relating to people; imitation; emotional
response; body use; object use; adaptation to change;
visual response; listening response; taste, smell and touch
response and use; fear/nervousness; verbal communica-
tion; non-verbal communication; activity level; level and
consistency of intellectual response; and general impres-
sions. Each item is scored on a four-point scale; total
scores range from 15 to 60. The total scores on the CARS2
are used to distinguish the child’s placement on the ASD
spectrum (non-autistic, mild/moderate ASD, or severe
ASD). The reliability of the CARS ranges in the litera-
ture from alpha coefficients of 0.73 to 0.94 [27,28]. In [29],
Eaves and Milner found that the CARS had a sensitivity
of 98%.
Hearing and middle ear function was assessed prior

to the ERP protocol by research assistants trained by an
audiologist using standard audiometry. Participants who
failed the hearing screen were referred to an audiolo-
gist for follow-up testing. All participants included in the
study were assessed to have adequate hearing for the ERP
protocol.
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The ERP protocol was as follows:

1. Apparatus: Data were collected using an EGI GES
300 system (Electrical Geodesics, Inc, Eugene, OR)
utilizing a HydroCel 128 Channel Geodesic Sensor
Net and a Net Amps 300 amplifier. The Cz electrode
was used as the reference electrode.

2. Auditory paradigm: Speech sounds were presented
using an oddball paradigm in blocks of 400 stimuli,
each block lasting approximately 8.5 minutes. The
standard (repetitive) stimuli were presented 85% of
the time and deviant (novel) stimuli presented 15% of
the time. The stimulus duration was 340 ms and the
inter-stimulus interval was 960 ms. Synthesized
speech was utilized, specifically phonemes (dae and
daa). Phonemes were chosen as previous studies
have reported differences in speech sound processing
between ASD and typical controls [10]. For each
block, which phonemes were chosen as the standard
and deviant stimuli was random. The order of
presentation of each phoneme was
pseudo-randomized. Within each block, at least four
standard stimuli were presented before and after
each deviant stimulus.

3. Data collection procedure: Continuous EEG data
were collected in a small, soundproof room with
auditory stimuli presented binaurally via wall
speakers. The ERP recording device was in a room
adjacent to the data collection room. During the
presentation of the auditory stimuli, a caregiver
and/or research assistant remained in the room with
the participant. Participants watched a silent movie
or played on an iPad throughout the protocol. iPad
games were preselected by the research team and
only those that were found to generate minimal
movement were offered to the participant during
data collection. iPad games were also played without
sound. Movement breaks were offered to participants
between blocks of trials to increase compliance with
the protocol and maximize data collected.

Artifact removal
The data were preprocessed to remove artifacts. First,
baselining was performed by subtracting the mean of
the 200 ms of the pre-stimulus signal. Next, artifacts
were rejected on a channel-by-epoch basis, in which the
rejection of data on a given channel and epoch was inde-
pendent of data taken on other channels during the same
epoch. That is, data from epoch e and channel c may
be rejected while data from epoch e, channel c′ is kept.
This method of rejecting data on a channel-by-epoch
basis differs from the more traditional approach in which
data from all channels and a given epoch is discarded,

even if only data from one of the channels is found to be
artifactual.
More specifically, the raw data from a single subject

before rejection can be expressed as the three-
dimensional array X ∈ R

C×E×T , with C, E, and T
indicating the number of channels, epochs, and time sam-
ples, respectively. As described above, across the study
the number of channels C was 128, and the number of
time samples T was 300. The number of recorded epochs
E differed between subjects, but was typically around
1,000. Traditional rejection amounts to selecting a prin-
cipal subarray of X, obtained by striking out rows and
columns corresponding to noisy channels and epochs.
That is, Ĉ channels are first rejected across the study,
leaving a data array of shape (C − Ĉ) × E × T . After this,
Ê noisy epochs are rejected, leaving a data array of shape
(C−Ĉ)×(E−Ê)×T . This is the method described in [17].
On the other hand, the result of our approach was not

a rectangular array, as a different number of epochs were
rejected on each channel. Rather, our technique was to
form a set of pairs P = {(c, e)} for each subject, such that
if (c, e) ∈ P, then epoch e on channel c is ‘clean’, i.e., not
rejected. The remaining data were then the set of vectors
D = {xc,e,1:T : (c, e) ∈ P}. In this notation, 1:T denotes
that the elements from 1 to T are selected, so that xc,e,1:T
is a vector in R

T representing all time samples from chan-
nel c and epoch e. In the following analysis, we often deal
with the data from standard and deviant epochs sepa-
rately. That is, we form the sets S = {xc,e,1:T : (c, e) ∈
P and e is a standard epoch} and D = {xc,e,1:T : (c, e) ∈
P and e is a deviant epoch}. As such, while traditional
artifact rejection amounts to the removal of entire epochs,
our approach removed individual epoch-channels.
In what follows, two strategies were used: threshold

and trend-line rejection. In threshold rejection, an epoch-
channel was removed if a portion of the raw signal devi-
ated by ±100 μV from the baseline. In trend-line rejec-
tion, a line was fitted to the signal and the epoch-channel
was rejected if the slope of the line exceeded 50 μV per
epoch with a minimum coefficient of determination of
0.3. An epoch-channel was discarded if it was rejected by
either threshold or trend-line rejection, or both.
Figure 1 shows the result of our approach to rejection

on a single block of 400 epochs, using the threshold and
trend-line rejection parameters described above. If the
(i, j) pixel is white, the data from the ith channel and
the jth epoch were rejected. After the rejection process,
the data remaining were from the black region of the
image. For the jth epoch to be considered clean using the
traditional approach to rejection, the entire jth column
of the image would need to be black. As a result, the
traditional approach rejections all of the epochs of this
block, as each epoch is marked for rejection on at least
one channel. On the other hand, out of the 51,200 epoch-
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Figure 1 Channel rejection rates. Rejected epoch-channels from a block of 400 epochs. All 400 epochs were recorded from the same individual
during one session. A white cell indicates that the epoch-channel was rejected by threshold or trend-line rejection, while a black cell was kept.

channel slices in the data shown in Figure 1, our method
rejects 15,430. Therefore, roughly 70% of the data from
the block were retained.
This departure from the standard was done in response

to the large amount of noise in the data. To demonstrate
this, the following experiment was performed: noisy chan-
nels were rejected on a per block basis by computing the
kurtosis of the observations on a given channel across
all epochs. The channel was rejected if the kurtosis was
greater than five standard deviations away from zero. This
resulted in an average of eight channels being rejected per
block. Next, epochs were rejected using simple threshold
rejection with several thresholds, ranging from 100 μV to
1,000 μV.
The median proportion of epochs kept per block as a

function of the threshold is shown by the solid red line in

Figure 2, along with the upper and lower quartiles (dashed
lines). Mostly notably, if the rejection threshold is set at
100 μV, none of the data is kept. If the objective were to
keep, on average, 75% of the data from any given block, the
threshold would need to be raised to nearly 500 μV. This
threshold is several times the suggestion given in [17], and
will likely result in the inclusion of many obvious outlying
artifacts.
Alternatively, our approach of rejecting individual

epoch-channels as opposed to entire epochs drastically
reduces the amount of data rejected, as shown by the blue
lines in Figure 2. Most strikingly, at the commonly used
threshold of 100 μV, 85% of the data are kept on average,
whereas none of the data would be kept using the tradi-
tional approach. This method allows for more stringent
rejection thresholds than commonly used in more general

Figure 2 Comparison of rejection methods. The proportion of epochs retained per block is shown as a function of the threshold, for both our
method (blue) and the traditional approach to rejection (red). The solid line shows the median number of epochs rejected per block, and the
dashed lines show the upper and lower quartiles.
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EEG studies, and for the inherently noisier data collected
from young children, without catastrophic rejection rates.
Lastly, it should be noted that while it is common to

clean the data of eye blink artifacts by, for example, reject-
ing characteristic ICA components, this approach was not
taken in this analysis. Rather, we found that including eye
blink artifacts is an important part of the classification
process. This result is further discussed below (see ‘The
importance of eye blinks and artifact removal’).

Features
Sum of signed differences
The ERP study was designed to examine the difference
between ERPs in ASD and typical children. In an asso-
ciated study, Lane et al. (under review) found that ASD
and typical children can be characterized by the difference
between their responses to deviant stimuli and to standard
stimuli. In particular, it was found that in children with
ASD, the deviant evoked potential was significantly higher
than the standard evoked potential at certain key times
of the response. This difference between the deviant and
standard responses was not significant in typical children.
Figure 3 shows the median standard and deviant wave-

forms for both TD and ASD children, averaged over the
entire study, and using the artifact rejection approach
described previously. Notably, the response to deviant
stimuli by ASD participants was more positive than their
response to standard stimuli, particularly from 0 to 200
ms and from 400 ms onwards. To test the significance of
this difference, the sum of signed differences (SSD) was
computed in four intervals (0 to 150 ms, 150 to 250 ms,
250 to 400 ms, and 400 to 1,000 ms) and for each sub-
ject. A t-test was then used to test the null hypothesis
that the SSD of ASD subjects and the SSD of typical sub-
jects were drawn from normal distributions with the same
mean. The results of the t-tests are shown in Table 2. In

Table 2 Significance of difference between conditions of
SSD in various intervals

Time interval (ms) P value

0 – 150 0.0020

150 – 250 0.0905

250 – 400 0.3148

400 – end 0.0118

SSD, sum of signed differences.

the interval from 0 to 150 ms and in the interval from 400
to 1,000 ms, the distributions are significantly different at
the P = 0.05 level, and in the interval from 150 to 250 ms
the difference is marginally significant.
To quantify this observed difference, the median stan-

dard and deviant responses were calculated for each sub-
ject. In terms of the notation used in the ‘Artifact removal’
section above, this involved the calculation of the median
vectors of the set of standard responses S and the set
of deviant responses D. Recall that S and D are sets of
vectors in R

T , where T is the number of time samples
recorded per epoch. We calculated the median standard
response s̄ ∈ R

T in a straightforward manner: by finding
the element-wise median of the vectors in S. That is, the
ith element of s̄ is the median of all of the ith elements of
vectors in S: s̄i = median{xi : x ∈ S}. The median deviant
response d̄ was calculated in an analogous fashion.
To measure the difference between a subject’s average

standard response and average deviant response in a more
suitable manner for a classification algorithm, we used
the SSD in various time intervals of the response wave-
form. The SSD was computed by subtracting the median
standard response from the median deviant response at
each time sample, yielding a 1,200 ms difference wave-
form. This was partitioned into 24 equal-length segments,

Figure 3Median waveforms for each condition and stimulus type. Note the magnitude of the difference between the ASD standard response
and deviant between 0 and 200 ms, and from 400 ms onwards. This difference is not as pronounced in the typical waveforms. ASD, autism spectrum
disorder; TD, typically developing.
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each corresponding to a 50 ms interval of signal. The area
under the difference curve was found in each region, giv-
ing 24 SSD features representing a single subject. Note
that the median waveforms were used here, as opposed
to the mean waveforms, as the median is more robust to
outliers.
More explicitly, given the typical standard waveform s̄

and the typical deviant waveform d̄, both vectors inRt , the
difference vector δ = d̄− s̄ was computed. The SSD in the
ith region was then found by integrating:

50i∑

j=50(i−1)+1
δj

The SSD statistic quantifies the difference between the
deviant and standard responses. A positive SSD suggests
that the deviant response is higher than the standard
response in a region. Furthermore, because the SSD com-
bines information across time samples, it further reduces
the effect of noise.

Variance in time
In addition to the SSD statistic, the variance of the typi-
cal standard waveform was computed for use as a feature.
Given the difference waveform δ as computed above, the
variance was computed in 12 partitions:

vi = var{δj|100(i − 1) + 1 ≤ j ≤ 100i}
This represents the variability of the typical response

over time. Note that the variance was computed in fewer
partitions (12) than the SSD feature (24). This was done
so that each partition was larger, thereby including more
data for each variance calculation.

Modifiedmultiscale entropy
The procedure outlined by [16] was used to compute the
modifiedmultiscale entropy (mMSE) feature for each sub-
ject. The mMSE was calculated over 20 s of data gathered
by concatenating several 1.2 s epochs, for a total of 5,000
contiguous time samples. Every other channel was dis-
carded so that only 64 electrodes were considered, and 20
timescales were used in the calculation. These choices for
the number of time samples, electrodes, and timescales
match those used by [16].

Classification
Before classification, the features above were combined in
three different ways:

1) Our features: First, we combined the SSD features
with the variance features. Recall that the SSD was
computed in 24 partitions, each corresponding to 50
ms of signal. Because the first 200 ms of the response
was taken pre-stimulus presentation, the first four
partitions were discarded, leaving 20 SSD features.

A small but statistically significant group difference was
found in the variance of the standard response shortly
after stimulus presentation. The fourth, fifth, and sixth
partitions, corresponding to the variance between 200 ms
and 400 ms post-stimulus, were kept, leaving three vari-
ance features. The 20 SSD features and three variance
features were concatenated into a 23-dimensional feature
vector.

2) mMSE: The mMSE features described by [16] were
calculated as described above, resulting in a
1,280-dimensional feature vector for each subject.

3) Our features + mMSE classification. A linear support
vector machine (SVM) was trained with penalty
parameter C = 0.1, and evaluated on each subject
using leave-one-out cross-validation (LOOCV). The
resulting classification for each subject was appended
to our feature vector to produce a 24-dimensional
feature vector for each participant.

The decision to use the SVM’s prediction rather than
concatenating the mMSE features with ours directly was
made because of the disparity in dimensionality between
the two feature sets. The mMSE features vastly outnum-
ber the SSD and variance features, and so directly concate-
nating the two would tend to produce a classifier focused
on the features from [16].
An alternative approach is to use the predictions of

classifiers trained on our features and the features from
[16] separately, producing a two-dimensional feature vec-
tor. This method was tested, but generally resulted in
poorer classification accuracy than using the approach
outlined above, and is therefore omitted from the discus-
sion below. Each set of features was used with several
machine-learning algorithms implemented in the Scikit-
Learn machine-learning package [30]. For an overview
of each classifier, see the textbook by Theodoridis and
Koutroumbas [31].

Support vectormachine
A linear SVM was trained on each of the three fea-
ture configurations. The performance of the classifier
was evaluated by LOOCV. A nested threefold cross-
validation process was used to pick the penalty parameter
C. In this process, a training fold produced by LOOCV
was split in three, and the performance of a parame-
ter selection was evaluated by training on two of the
sets and testing on the third, then permuting the train-
ing sets and averaging the accuracy over all permuta-
tions. A logarithmic interval of [2−4, 26] was searched
over to obtain the optimal C. Because there were more
typical participants in the study, the class weights were
adjusted so that the weighting of each example was
inversely proportional to the class’s frequency in the
data.



Eldridge et al. Journal of Neurodevelopmental Disorders 2014, 6:12 Page 8 of 12
http://www.jneurodevdisorders.com/content/6/1/12

Logistic regression
An l2-regularized logistic regression classifier was trained
on each of the data sets. An l1-regularized classifier was
also tested, though found to perform worse and there-
fore omitted from the following presentation. The perfor-
mance of the classifier was evaluated using LOOCV, and
the regularization parameter C was chosen using nested
threefold cross-validation over the interval [2−5, 25].

Naive Bayes
A Gaussian naive Bayes classifier was trained on each
of the configurations. Given an example, the result of
the classifier is the probability estimate of the example
belonging to the typical class, conditioned on the data.
To account for the unbalanced data set, this probability
estimate was compared to a threshold chosen by nested
LOOCV to produce a final, hard classification label. The
performance of the classifier was evaluated using LOOCV.

Results
Table 3 shows the accuracy obtained for different classi-
fiers on the three feature sets. The accuracy is weighted
so that each class contributes equally. More specifically,
if there are n1 examples in class 1 and n−1 examples in
class 2, and c1, c−1 are the number of correctly classified
examples in each class, the weighted accuracy is

n−1c1 + n1c−1
2n1n−1

The naive Bayes classifier resulted in the best perfor-
mance of 79% accuracy when our features were combined
with those from [16]. To determine the statistical signif-
icance of the classification accuracy, the data labels were
permuted 100 times and the accuracy of the classifier
recorded for each permutation. This was done for the
naive Bayes classifier using only our features, and for the
naive Bayes classifier using the stacked features. In both
cases every permutation resulted in a lower classification
accuracy than that shown above. Additionally, the sensi-
tivity of the classifier was computed to be 0.68 and the
specificity to 0.87. Reports of precision for current clini-
cal diagnostic measures range from a sensitivity of 0.91 to
0.98 and a specificity of 0.5 to 0.84 [32].

Table 3 Classifier performance for various feature sets

Classifier Our features mMSE Ours + mMSE

SVM 0.69 0.69 0.67

Logistic regression 0.67 0.63 0.63

Naive Bayes 0.77 0.60 0.79

The best performance for each set is in bold. Numbers shown denote the
accuracy of the classifier. mMSE, modified multiscale entropy; SVM, support
vector machine.

The importance of eye blinks and artifact removal
As previously mentioned, eye blink artifacts were not
removed before analysis. It is interesting to note that
the classification result above is contingent upon the eye
blinks being left in the data. Table 4 shows the result
of using the same features and classifier hyperparame-
ters as used in the previous analysis, but with removing
eye blink artifacts after epoch rejection. More specifi-
cally, eye blink artifacts were removed by ICA. Principal
component analysis was used to decompose each block
of data into ten components, which were then further
decomposed into independent components. Up to two
components resembling eye blink artifacts were manually
identified and subtracted.
As can be seen, each classifier performs at chance. This

result suggests that the inclusion of eye blink artifacts
may be useful for the classification of ASD by EEG. This
hypothesis is further supported by group differences in
the number of epochs rejected from the front electrodes.
The topographical plot in Figure 4 shows how the number
of rejected epochs varies across electrodes. More epochs
were rejected from the electrodes on the perimeter of the
net compared to electrodes in the center. This is likely due
to the difficulty in obtaining a clean contact between the
extreme electrodes and the comparably irregular surfaces
on the side, rear, and front of the head. It can also be seen
that the electrodes with the most rejected epochs were
placed on the front of the scalp. This is to be expected,
as these electrodes are those most affected by eye blink
artifacts.
Table 5 shows the median proportion of epochs rejected

for several electrodes placed on the front of the scalp for
both ASD and TD individuals. The result of a Kruskal–
Wallis test provides the accompanying P value. On all
but one electrode, the median proportion of epochs
rejected from ASD subjects was significantly higher than
the median proportion rejected from their neurotypi-
cal counterparts. This suggests that the data from the
ASD subjects are noisier for these electrodes. One sim-
ple hypothesis is that the frequency of eye blinks under
the presentation of novel auditory stimuli differs between
ASD and typical children.
The above results suggest that the performance of our

classifier is driven largely by differences in the frequency

Table 4 Classifier performance with eye blinks removed

Classifier Our features mMSE Ours + mMSE

SVM 0.45 0.52 0.41

Logistic regression 0.58 0.58 0.54

Naive Bayes 0.42 0.56 0.43

Numbers denote the accuracy of the classifier. mMSE, modified multiscale
entropy; SVM, support vector machine.
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Figure 4 Electrode rejection rates. Topographical plot showing the number of epochs rejected for each electrode across the entire study. The
electrodes at the perimeter of the sensor net suffered the most rejections.

of eye blinks between ASD and neurotypical subjects. If
this is the case, what is the utility of using EEG in classifi-
cation? That is, if our method draws largely from dispari-
ties in ocular artifacts, could a simple count of eye blinks
achieve a similarly high classification accuracy? To answer
these questions, eye blink artifacts were counted auto-
matically. ICA components were computed as described
above. For each subject, the component most resembling
an eye blink artifact was manually selected. The activation
of this component was zero-meaned across the subject’s
data, and the standard deviation was computed. The stan-
dard deviation was used to set a subject-specific threshold:

Table 5 Rejection rates for selected periorbital channels,
ASD and TD

Channel ASD TD P value

127 69% 61% 0.05

17 58% 49% 0.02

126 67% 57% 0.08

21 55% 47% 0.05

14 53% 54% 0.21

25 70% 60% 0.03

8 69% 61% 0.02

The P value measures the significance of the difference between the rejection
rate in ASD subjects and the rate in TD subjects. ASD, autism spectrum disorder;
TD, typically developing.

if the activation of the eye blink component in a given
epoch exceeded this threshold, the epoch was marked as
containing an eye blink. In this manner, eye blink counts
were accumulated for every subject in the study. Using a
subject’s eye blink frequency as his or her sole represen-
tative feature, a weighted resubstitution accuracy of 66%
was obtained, compared to the 79% accuracy obtained by
our classifier in cross-validation.
A classifier using eye blink counts alone therefore

appears to be weakly predictive. While our classifier
appears to draw much of its classification performance
from the frequency of eye blinks, it is nevertheless able
to obtain a significantly higher accuracy, thereby vindi-
cating the use of the more complicated EEG data. This
suggests that the removal of eye blink components has the
unintended side effect of removing a signal that contains
information that is predictive of autism.

A note on gender
Given that the set of ASD subjects and neurotypical sub-
jects had very different ratios of males to females, it is
possible that the classifier was biased so that it was clas-
sifying on the basis of gender, not condition. For example,
if the classifier labeled all males as ASD, and all females
as neurotypical, an unweighted accuracy of nearly 75%
would be obtained.
To address this concern, only the data from the male

subjects was used in training and testing, leaving 16 ASD
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subjects and 15 typical subjects. If the classifier were
in fact a gender predictor, it would achieve near-chance
accuracy on this data set. In fact, the naive Bayes classifier
yielded 74% accuracy, which is sufficiently close to the 79%
accuracy of the classifier on the full data set to conclude
that the effect of the gender bias is small, if existent.

Discussion
The purpose of this study was to develop and test a novel
approach to the generation of EEG features useful in the
classification of ASD. Our approach was to develop the
SSD statistic as a robust measure of a subject’s neural sen-
sory reactivity. Our results suggest that this method is
competitive with other previously reported approaches,
achieved accepted sensitivity and specificity, and was
unaffected by gender bias. Of most importance, however,
was the fact that this result was achieved on a small data
set with data retention optimized in preprocessing.
Any analysis of EEG data must address the large amount

of noise inherent in the process. Many methods exist to
clean EEG data of eye blink and muscle artifacts and
electrode noise. Commonly used approaches include the
removal of ICA components that are typical of eye blinks,
rejection of noisy channels by kurtosis, and epoch rejec-
tion by threshold or trend-line fitting. Oftentimes these
methods cannot be automated or require the expertise of
an EEG technician, making them difficult to reproduce.
It has also been seen, both in the above findings and by

others [12], that the amount of data discarded as noise by
artifact removal techniques may be influenced by the con-
dition that we wish to diagnose. In the case of our analysis,
the inclusion of artifactual data was an integral part of our
method; removing these ‘artifacts’ (vis-à-vis eye blinks)
significantly reduced classification performance.
This emphasizes the importance of artifact rejection in

the process of building a classifier. The process can be
described with three steps:

1. Reject artifactual data.
2. Compute features on the cleaned data.
3. Learn a classifier using these features.

A common approach is to remove as much noise as pos-
sible in the first step so as to compute features from the
data that are believed to be more representative of the
underlying brain activity. One downside of this approach
is that clean EEG data are often difficult to distinguish
from artifactual data, particularly for young participants
or those with neurobehavioral disorders [12]. As a result,
it is not always clear whether the data being removed are
noise, or whether they reflect brain activity that may in
fact be predictive of the underlying condition. As the com-
plexity of an artifact rejection method increases, the inter-
pretation of what data are being removed often becomes

more difficult, compounding the problem. Another down-
side of this approach is that it is particularly devastating
to studies involving younger subjects, who are more likely
to introduce additional artifacts by fidgeting or through
non-cooperation. Adopting an aggressive artifact rejec-
tion approach leaves little remaining data, which increases
the danger of overfitting.
Our approach is to spread the burden of artifact reduc-

tion over all three steps listed above. First, we adopt very
simple, automated rejection methods to preprocess the
data. The goal in this step is not to remove all artifacts,
merely those which are obviously noise.We argue that our
simple approach to artifact rejection is easier to imple-
ment, understand, and reproduce. It also has the benefit
of retaining much more data.
It is likely the case that the retention of these data,

some of which would be considered artifactual by tradi-
tional approaches to rejection, results in more noise in the
rest of the pipeline. For this reason, we use a small set
of robust features to reduce noise further. In the above
analysis, we favored the median over the mean wherever
possible, as the former is more robust to outliers. This
averaging allows us to combine as much information as
possible to reduce noise to the fullest extent. For example,
the typical standard response was found by gathering all
of a subject’s responses to standard stimuli, regardless of
channel or epoch, then taking the median at each sample
time across all responses. As a result, nearly 100,000 mea-
surements were used to compute each sample point of the
typical standard waveform for each subject. By incorpo-
rating as much data as possible into these grand averages,
we extend artifact rejection in the preprocessing stage to
artifact suppression in the feature-building stage.
EEG studies often involve a small number of partici-

pants, with the control group outnumbering the group
of interest. This is also the case in our study. Overfit-
ting is a supreme danger in such cases, even if much
care is taken to preprocess the data and to keep the fea-
ture set small and robust to noise. We found that the
naive Bayes classifier was the most capable of handling the
small, unbalanced samples of this study. A possible rea-
son for this success is the independence assumption of
the classifier; features are assumed to be independent of
one another. For this reason, the classifier is less likely to
fit interactions between the features. In reality, the naive
Bayes assumption of feature independence is most likely
incorrect, but learning these subtle interactions requires
much more training data than are often available.
In [33], Hand et al. give another possible explana-

tion for the simpler naive Bayes classifier outperforming
the more sophisticated models. In particular, they argue
that simpler methods may outperform more complicated
approaches when the distinction between classes is not
clearly defined. In these cases, class labels include a large
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amount of arbitrariness, and more complicated models
learn idiosyncrasies of the design data, which the simpler
models cannot, essentially leading to overfitting. As ASD
is, famously, a spectrum, the boundary between neurotyp-
ical and ASD subjects is not clearly defined, and so Hand
et al.’s discussion is appropriate.
Our approach for rejecting epoch-channels can be inter-

preted as a weighting of the channels based on how noisy
they are. Each channel contributes a different number
of epochs to the study, with noisier channels contribut-
ing fewer epochs. Consider an especially noisy channel,
in which only a few epochs are deemed to be clean with
respect to our rejection criteria. These epochs may still
contain useful information, and we would therefore like
to include them in the average waveforms computed for
the subject. On the other hand, we might be skeptical of
the data from this channel, given that such a large propor-
tion of its data is artifactual. This skepticism is implicitly
considered by the process of averaging, as a channel’s con-
tribution to the final average is dependent upon howmany
unrejected epochs it contains, i.e., how noisy it is. This
probabilistic interpretation is an advantage over methods
depending on the interpolation of channels.
The traditional approach does not enjoy this benefit, as

each channel contributes the same number of epochs to
the grand average. If, as in our study, the rejection crite-
ria must be made very permissive to retain a reasonable
amount of data, it is quite likely that the epochs kept,
and therefore the channels kept, vary significantly in the
amount of noise they contain. For example, consider a
channel that contains many epochs that are close to our
(now very lenient) rejection criteria but still deemed to be
non-artifactual. This channel will contribute just as much
data to the grand average as a channel for which all epochs
are far away from being considered artifactual. This is
in contrast to our approach: we can make the rejection
criteria much tighter, therefore decreasing the variability
among the kept epoch-channels.
Further, the results of our study reveal that eye blink

activity during an auditory oddball paradigm contributes
strongly to the accuracy of our classification framework.
Standard ERP protocols remove eye blink data on the
assumption that they are purely ‘artifactual’. As a mea-
sure of central dopaminergic activity with links to general
arousal, however, eye blink data may enhance the discrim-
ination power of ERP techniques. Further investigation of
eye blink rate in concert with other measures of sensory
reactivity is warranted to explore its utility as a marker of
salient neural differences in ASD.

Conclusions
In this paper we have shown the competitiveness of a
framework for classifying ASD in young children using
EEG data collected from an auditory oddball paradigm.

Central to our framework is the twofold approach of sim-
ple artifact rejection on a channel-by-epoch basis and
the construction of robust features. In particular, we
have found that features that quantify the difference in
response to novel auditory stimuli (SSD), combined with
the mMSE features used by [16], give the best classifica-
tion performance.
We have provided evidence that traditional artifact

rejection approaches may be ill suited for EEG studies
involving children. Most notably, the amount of noise
inherent in such studies combined with the increased
probability of a channel containing noise, introduced by
high-density sensor arrays, leads to devastating rejection
rates for usually sensible rejection criteria. In response to
this, we discard the usual assertion that for a given epoch
to be clean, it must be clean on every channel. Instead, we
reject individual epoch-channel slices. We found that this
allows for the retention of much more data.
It may be argued that performing artifact rejection in

this fashion leads to more noise in the remainder of
the classification pipeline. We addressed this issue by
using robust features and simple classification algorithms
that are resistant to overfitting. Furthermore, we pre-
sented evidence that artifact rejection for the sake of
artifact rejection might be detrimental to classification
performance. Most notably, we showed that the inclu-
sion of eye blink artifacts leads to improved classification
accuracy.
In conclusion, we note that an objectively superior

method of comprehensive artifact rejection that applies to
every EEG study likely does not exist. Therefore, while tra-
ditional approaches and rules of thumbmay apply tomany
studies, special consideration is necessary in cases involv-
ing unusual amounts of noise, such as studies involving
children with ASD. In this paper, we have presented
evidence that a streamlined approach to artifact rejec-
tion combined with robust features leads to the highest
classification accuracy. Further exploration of alternative
approaches to EEG data processing in special populations
is warranted.
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