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Abstract

Background: There is a substantial literature on the neurobiology of reading and dyslexia. Differences are often
described in terms of individual regions or individual cognitive processes. However, there is a growing appreciation
that the brain areas subserving reading are nested within larger functional systems, and new network analysis
methods may provide greater insight into how reading difficulty arises. Yet, relatively few studies have adopted a
principled network-based approach (e.g., connectomics) to studying reading. In this study, we combine data from
previous reading literature, connectomics studies, and original data to investigate the relationship between network
architecture and reading.

Methods: First, we detailed the distribution of reading-related areas across many resting-state networks using meta-
analytic data from NeuroSynth. Then, we tested whether individual differences in modularity, the brain’s tendency to
segregate into resting-state networks, are related to reading skill. Finally, we determined whether brain areas that
function atypically in dyslexia, as identified by previous meta-analyses, tend to be concentrated in hub regions.

Results: We found that most resting-state networks contributed to the reading network, including those subserving
domain-general cognitive skills such as attention and executive function. There was also a positive relationship
between the global modularity of an individual’s brain network and reading skill, with the visual, default mode and
cingulo-opercular networks showing the highest correlations. Brain areas implicated in dyslexia were also significantly
more likely to have a higher participation coefficient (connect to multiple resting-state networks) than other areas.

Conclusions: These results contribute to the growing literature on the relationship between reading and brain
network architecture. They suggest that an efficient network organization, i.e., one in which brain areas form cohesive
resting-state networks, is important for skilled reading, and that dyslexia can be characterized by abnormal
functioning of hub regions that map information between multiple systems. Overall, use of a connectomics
framework opens up new possibilities for investigating reading difficulty, especially its commonalities across other
neurodevelopmental disorders.
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Background
Reading is a complex cognitive act. To read, individ-
uals must precisely control visual attention, map sym-
bols to phonological representations, extract meaning
from words, update mental representations of the text,
inhibit unimportant associations, and make appropri-
ate inferences. Consequently, while the most explicit
aim of reading instruction and intervention is to build
fast and efficient orthographic-phonological mapping,

*Correspondence: laurie.cutting@vanderbilt.edu
Peabody College, Vanderbilt University, One Magnolia Circle, Nashville, TN, USA

reading difficulty can arise from many sources [1, 2].
To further complicate matters, reading disability is often
comorbid with other learning and developmental disor-
ders, such as specific language impairment and attention
deficit/hyperactivity disorder [3, 4].
In the past two decades, neuroimaging research has

provided valuable insights into the neural mechanisms
of typical and atypical reading. Researchers have found
that reading co-opts the brain’s visual system to intro-
duce a new input pathway into existing language com-
prehension circuitry [5]. As text complexity increases,
a larger demand is made on attentional systems, and
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activation becomes more bilateral and widespread [6].
Meta-analyses show that individuals with reading diffi-
culty typically exhibit underactivation in areas responsible
for recognizing symbol units, parsing acoustic sounds
into phonological units, and binding letters to sounds
[7–9]. However, many questions remain regarding the
root causes of dyslexia, how to best identify children at
risk and the reasons for its high comorbidity with other
developmental disorders.
Connectivity-based neuroimaging methods provide an

alternative framework to examine reading difficulties.
Whereas traditional approaches focus on identifying focal
regions of deficit, many learning and psychiatric disor-
ders are characterized, in part, by how brain networks
behave and interact. In particular, connectomics analyses
have shown that the brain exhibits a network configura-
tion which allows for high transferability of information
at minimal cost, i.e., a “small-world” network architecture
[10]. Two attributes of brain organization have been of
special interest: the presence of densely intra-connected
modules, often called resting-state networks (RSNs) [11],
and the existence of a core group of hub areas that play an
outsize role in conveying information between RSNs [12].
This small-world architecture appears to reach peak effi-
ciency in young adulthood, with younger children exhibit-
ing fewer long-range RSNs [13] and older adults showing
a decrease in modularity, especially in higher-order RSNs
like the default mode network [14].
Since reading requires rapid interaction and manipula-

tion of disparate cognitive processes, the network frame-
work is an appealing avenue of investigation in reading
disorders. Previous research has suggested that the areas
responsible for reading do not form an independent sys-
tem, but are instead distributed across multiple RSNs
[15]. There is evidence that the lower modularity within
these RSNs (e.g., the default mode network) could be
predictive of disorders, including attention deficit hyper-
activity disorder [16]. Furthermore, damage to hub areas
can cause devastating behavioral effects [17] and may be
degenerated in psychiatric and developmental disorders
such as schizophrenia, Alzheimer’s disease, and ADHD
[18]. Graph theory measures of connectedness within and
between RSNs may consequently be related to differences
in reading skill. However, while a small number of papers
indicate that they may be affected in dyslexia [19, 20],
its application in the reading domain has been relatively
sparse, with few emergent themes thus far [21]. This is
surpising because connectomics data can be procured
without using cognitive tasks (which represent a con-
founding variable) and because they provide a common
neurobiological framework for understanding cognitive
disorders.
In this paper, we test the hypothesis that an effi-

cient global network architecture is important for skilled

reading. First, we establish that areas subserving reading
fall into many RSNs, rather than loading onto a single net-
work. Second, we test whether better readers are more
likely to have high modularity during rest, i.e., densely
intra-connected RSNs. Finally, we determine whether
dyslexia, like other psychiatric disorders, disproportion-
ately impacts hub areas. Our aim is to provide a founda-
tion for future studies examining individual differences in
network architecture and reading skill.

Methods
Distribution of resting-state networks across reading areas
Reading-related regions were selected on the basis of
the Neurosynth meta-analytical database [22], comprising
11,406 studies as of October 31, 2017. NeuroSynth aggre-
gates brain activation data from thousands of studies to
return activation likelihood maps based on search terms.
The database includes terms such as “word recognition”
(74 studies), “visual word” (98 studies), and “language
comprehension” (76 studies). We chose to use the term
“reading” (427 studies) because it was inclusive of most
of the studies returned by narrower results, and it also
showed a high degree of consistency with the other terms.
NeuroSynth provides two meta-analytic activation maps,
one using forward-inference and the other using reverse-
inference. The forward-inference map creates a map of
brain areas associated with reading-related papers; the
reverse-inference map returns the set of brain areas most
likely to be active only in reading-related papers. The
reverse-inference map thus de-weights domain-general
functional areas and is more representative of reading-
specific areas than the forward-inference map. Because
domain-general processes are fundamental to skilled
reading (especially comprehension), our primary interest
was in the forward-inference map, but both maps were
examined.
The 7-network cortical parcellation from Yeo and col-

leagues (2011) was used to represent canonical RSNs
[23]. On the basis of resting-state fMRI data from 1000
subjects, this atlas identifies the following RSNs: visual,
somatomotor/auditory, limbic, ventral attention, dorsal
attention, default mode, and fronto-parietal. The “Liber-
ally Masked” volumetric data was downloaded inMNI152
space and co-registered to the NeuroSynth data. For each
inference map, the percentage of activation falling into
each RSN (cm3) was calculated to provide a distribution
across each RSN.

Relationship between brain modularity and reading skill
Original data for the modularity analyses were drawn
from the third and fourth waves of a larger longitudinal
study (NICHD R01 HD067254, 140 children at first wave).
Participants completed out-of-scanner cognitive tests and
an in-scanner language task. The fMRI task also included
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an extensive resting-state baseline in each run, which was
the primary target of analysis here. Further information
about the aims of this grant can also be found elsewhere
[24, 25].
Participants Participants were scanned in the summer

and fall following completion of third or fourth grade (ages
8–11). All participants met the following criteria: native
English speakers; normal hearing; normal or corrected-
to-normal vision; no history of major psychiatric illness
or traumatic brain injury/epilepsy; and no contraindica-
tion to MRI. Participants and their parents gave written
consent to participate at the beginning of the study, with
procedures carried out in accordance with Vanderbilt
University’s Institutional Review Board (IRB).
Participants completed cognitive tests, including the

Wechsler Abbreviated Scale of Intelligence (WASI) [26]
and the Test of Word Reading Efficiency (TOWRE) [27].
Demographics and test data are summarized in Table 1.
Functional MRI data In the MRI scanner, participants

performed up to four runs of a language comprehension
task, which was crossed on two conditions: the modal-
ity of presentation (listening or reading) and the passage
genre (expository or narrative). Each fMRI run had two
baseline conditions: a modality-specific baseline task and
a resting-state block with a fixation cross. The order and
duration for each block varied slightly across runs but was
approximately: paragraph 1 (70 s), baseline 1 (70 s), para-
graph 2 (70 s), baseline 2 (70 s), and resting-state (270 s).
Total scan time was 550 s for all runs, and the average
amount of resting-state baseline was 272 s (4 m, 32 s)
per run.
A scan run was included in the analysis only if a par-

ticipant had both listening and reading scans in the same
genre (e.g., auditory-expository and reading-expository).
Therefore, for each year, a participant had data from either
2 or 4 scan runs (about 9 or 18 min of resting-state scan
time, respectively). A scan session was excluded based on
the following parameters: high-motion volumes exceed-
ing 20%; poor task performance; and absence of a paired
modality scan. In total, resting-state data from 50 children
in the third wave (152 scans) and 45 children in the fourth
wave (162 scans) met inclusion criteria.
Imaging acquisition and preprocessing All fMRI

scans were acquired at Vanderbilt University Institute

Table 1 Demographics for study participants

Grade 3 Grade 4

Participants 50 45 (15 new)

Scan runs 152 162

Gender 24 F, 26 M 23 F, 22 M

Age at scan (SD) 9.45 (0.3) 10.5 (0.3)

WASI Full-Scale IQ (SD) 113.0 (15.5) 111.0 (15.9)

TOWRE - Total Word Efficiency (SD) 109.9 (14.8) 104.6 (17.4)

of Imaging Sciences on one of two Philips Achieva 3T
MR scanners with a 32-channel head coil. Functional
images were acquired using a gradient echo planar imag-
ing sequence with 40 slices acquired parallel to the
anterior-posterior commissure plane. Additional imag-
ing parameters for functional images were 250 dynamics;
TR = 2200 ms; TE = 30 ms; FOV = 240× 240× 120 mm;
flip angle = 75◦ ; voxel size = 3 × 3 × 3.2 mm3.
All scans were first preprocessed using a standard

pipeline in FSL (version 5.0.9) [28], and connectivity anal-
ysis was performed in the CONN toolbox [29]. fMRI data
were high-pass filtered at 0.008 Hz, motion-corrected, co-
registered to a structural image, normalized to MNI space
and smoothed by a 5-mm FWHM spherical kernel. Out-
lier volumes were identified as individual fMRI volumes
in which the RMS framewise-displacement exceeded 0.7.
fMRI timeseries were corrected using anatCompCorr
methods, which uses signal from white matter tissue and
cerebrospinal fluid areas to reduce noise not related to
brain activity [30]. Other covariates of no interest included
six rigid motion parameters, six derivative motion param-
eters, and outlier volumes. Finally, we used a weighted
general linear model (GLM) to model the resting block
and averaged within-subject across scan sessions to get a
de-noised resting-state timeseries.
Network definition To build off of previous work, we

created networks using 264 nodes originally published
by Power and colleagues (2011) [31]. The node set cov-
ers the entire brain, including subcortical areas, and has
been extensively used in graph theory analyses since its
publication (e.g., [32–34]). Suggested RSN assignments
for each node, totaling 13 unique networks, are also
available and were used to partition the network into
different RSNs. fMRI timeseries correlations were calcu-
lated between each of the the 264 nodes, resulting in a
single connectivity array for each subject at each time
point. Matrices were then thresholded into binary maps at
r = 0.15. (To confirm that this particular threshold did
not unduly influence results, we also tested thresholds at
r = 0.05, 0.10 and 0.20. No significant effect on the results
was found.)
Network analysis Global modularity (Q) quantifies

how well the whole-brain network segregates into com-
ponent RSNs. High modularity indicates that the network
has much higher connectivity within RSNs compared to
between RSNs; low modularity suggests that nodes do not
segregate into RSNs well. For undirected and binary net-
works, each connection in the array is given a positive
value if it links nodes in the same RSN, and it is then
weighted based on the degree of each node and the total
network. (For a detailed treatment, see [35].) Connection-
level values were aggregated to get node-by-node and
global measures of modularity for each individual, which
were then mean-centered and scaled to unit variance.
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AGLMwas used to determine the relationship between
global modularity and individual performance on the
TOWRE (total word efficiency, standard score). If sub-
ject data was available at multiple timepoints (n = 30),
it was averaged together to produce a single value.
Multiple supplementary analyses were also completed
to ensure that effects were not driven by cohort or
motion confounds: models were also analyzed for grades
3 and 4 separately, and also when including a mea-
sure of subject motion (mean global signal change).
We also examined whether there were differences in
the modularity relationship between TOWRE subtests
(sight word efficiency (SWE) and phonemic decoding
efficiency (PDE)).
To test whether there was an RSN-level trend in

the modularity-to-reading relationships, node modularity
values were also investigated. For the set of nodes com-
prising each RSN, a one-sample t test was performed to
see whether the RSN average was significantly greater
than the global node average.

Mapping dyslexia abnormalities onto hub areas
Two decades of neuroimaging research have allowed a rel-
ative consensus to form as to which brain regions are com-
monly dysfunctional in dyslexia. To determine whether
there was any pattern related to network architecture
in these areas, we gathered all activations from three
meta-analyses comparing fMRI responses for individuals
with dyslexia to typical readers [7–9]. The meta-analyses
encompassed a total of 68 studies comparing dyslexic
and typically developing individuals. Sample populations
included children and adults under different experimental

conditions. All brain areas that showed atypical activation
in dyslexia (either greater or less activity) were included.
When an activation spanned a large area, all reported local
maxima were included.
To get measures of hubness across the brain, we used

data from a connectomics study by Power and colleagues
[36]. That study reports the participation coefficient for
each of the 264 nodes previously described. The participa-
tion coefficient reflects the diversity of a node’s connectiv-
ity to different RSNs, where a higher value indicates that
the node is correlated with many different RSNs. Activa-
tions from the dyslexia meta-analyses were then mapped
to the geometrically closest node from this dataset, result-
ing in a small set of dyslexia-related nodes and a larger,
unaffected set. The nodes and descriptions, along with
their suggested system and atlas label, are available as an
Additional file 1.
The distribution of participation coefficients across the

264 nodes was non-normal, with a large group of areas
having low participation coefficients (i.e., affiliated with
few RSNs) and a smaller hub-like group. Therefore, a
Wilcoxon rank-sum test was performed on the partici-
pation coefficients for the two groups, which tests for
the equivalence of two distributions in a non-parametric
fashion.

Results
Distribution of resting-state networks across reading areas
A comparison of the NeuroSynth “reading” activations
to the 7-network parcellation from Yeo and colleagues
shows that reading is widely distributed across resting-
state networks (Fig. 1). In the forward-inference map, the

Fig. 1 Reading areas are distributed across many resting-state networks. On the left is the volumetric breakdown of the “reading” network, pulled
from a NeuroSynth automated meta-analysis (forward-inference: p < 0.01, FDR-corrected) [22], according to the 7-network cortical parcellation
from Yeo and colleagues [23]. On the right is a surface plot of the same data. Reading areas are well-distributed across different networks and load
highly onto attention and executive networks. Several important reading areas, including the inferior frontal gyrus and temporo-parietal junction, sit
at points where multiple networks converge, i.e., likely hub areas
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visual and somatomotor-auditory RSNs consituted about
one quarter of the NeuroSynth activations (17.5 and 8.2%,
respectively), while attention networks combined to make
up 37%. The fronto-parietal (19.3%) and default mode
(17.8%) networks were also highly represented. The lim-
bic network was the only RSN which did not meaningfully
overlap with the reading network. Compared to the base-
line distribution of the Yeo parcellation, the visual, dorsal
attention, ventral attention, and fronto-parietal networks
consituted a larger portion of the activation; the lim-
bic, somatomotor and default mode had smaller shares
(Table 2).
The NeuroSynth reverse-inference map was smaller

than the forward-inference map by 28.7% and was
restricted to areas more specific to reading. In particular,
there was a higher involvement of the visual (+3.9%) and
default mode network (+11.8%) compared to the forward-
inference map. On the other hand, networks supporting
domain-general functions (dorsal attention, ventral atten-
tion, fronto-parietal) were relatively less present (−3.4,
−6.7, and −6.0% , respectively). Representation of the
somatomotor-auditory and limbic network involvement
was mostly unchanged.

Relationship between brain modularity and reading skill
Individual differences in global modularity were predic-
tive of TOWRE - Total Word Efficiency standard scores
(Fig. 2). Modularity had a significant positive relation-
ship with out-of-scanner reading metrics (for all subjects:
r = 0.299, p = 0.013). This effect was also significant
when data was analyzed separately by grade (rG3 = 0.333,
p = 0.014; rG4 = 0.359, p = 0.012). The two subtests
that constitute the TOWRE both showed a positive rela-
tionship with global modularity, as well (rPDE = 0.314,
p = 0.009; rSWE = 0.251, p = 0.039).
When examined at the individual node level, the aver-

age correlation between modularity and TOWRE scores

Table 2 Distribution of resting-state networks across
NeuroSynth maps

Distribution across volumes (%)

Forward-inference Reverse-inference Whole-brain

Default mode 17.8 29.7 23.0

Dorsal attention 22.0 18.5 12.5

Fronto-parietal 19.3 13.3 14.7

Limbic 0.1 1.2 8.7

Somatomotor-
auditory

8.3 7.6 14.7

Ventral attention 15.0 8.3 10.4

Visual 17.5 21.4 16.9

Total volume 149.9 cm3 106.8 cm3 1067.9 cm3

was 0.134. Three RSNs had average node correlations that
were significantly higher than this global network mean:
the default mode (r = 0.183, p <0.001), visual (r = 0.183,
p = 0.004) and cingulo-opercular networks (r = 0.224,
p <0.001) (Fig. 2).

Mapping dyslexia abnormalities onto hub areas
Across the three meta-analyses, 32 of the 264 nodes
showed abnormal functioning in dyslexia. Figure 3 shows
the node-by-node distribution of participation coeffi-
cients for the entire set. The median participation
coefficient for unaffected nodes was 1.47; for dyslexia-
related nodes it was 3.28. A Wilcoxon rank-sum test
between the dyslexia and unaffected nodes showed
that dyslexia affects brain areas with higher partici-
pation coefficients than would otherwise be expected
(U = 4946.0, p <0.001).
Table 3 presents data for nodes that were identified

in at least two of the three meta-analyses, along with
nearby Talairach atlas labels. These six areas are dis-
tributed across the brain and are located near major
regions of previous investigation. Each of these nodes is
in the top half of the distribution of all participation coef-
ficients, with the occipito-temporal node (near the visual
word form area) having the lowest participation coeffi-
cient rank (53rd percentile) and the node near the pars
orbitalis of the inferior frontal gyrus having the highest
(97th percentile).

Discussion
The current study sought to determine whether aspects
of the brain’s network architecture are related to reading.
The results suggest that an efficient network organization,
i.e., one in which brain areas form RSNs, is important
for skilled reading, and that dyslexia can be character-
ized by abnormal functioning of hub regions that map
information betweenmultiple systems. To our knowledge,
this is the first time the relationship between modu-
larity and hubness to reading skill has been described,
adding to a foundation of work built on other connectivity
methods.
A connectomics approach to reading illuminates—

not displaces—previous neuroimaging research, much of
which focused on localizing specific cognitive processes.
One insight is that much of the “reading network” falls
in domain-general RSNs such as the attention and exec-
utive networks (see Fig. 1). While these areas perform a
specific function in reading, they are also often involved
in other processes. For example, the dorsal attention net-
work (DAN) encompasses the visual word form area, an
area that has been the subject of much interest and debate
in reading and dyslexia research [37]. It is probable that
this area is so important in reading not only because it
is connected to language areas [38], but also because it
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Fig. 2Modularity metrics at rest predict reading skill. Global modularity, the degree to which a whole-brain network separates into RSNs, was
positively related to reading skill across all subjects (N = 65). Modularity for individual nodes was also positive overall (ravg = 0.134), but was
significantly higher for nodes in the visual, default mode and cingulo-opercular RSNs (p < 0.01). RSN colors correspond to the dominant Yeo RSN
displayed in Fig. 1

is tightly tied to other areas that control goal-directed
attention [39]. Koyama et al. found that children with a
historical diagnosis of dyslexia had persistent de-coupling
of the DAN compared to typical readers regardless of
remediation status [40]. Vogel et al. found that reading
ability in typical children and adults (including decoding
and passage comprehension ability) predicted increased
correlations between the visual word form area and the
DAN [41]. The nesting of this orthographic-processing
area within the DAN is thus important to its role in
reading.
Our data support a hypothesis that high “intrinsic” effi-

ciency within RSNs is important even for relatively spe-
cific tasks such as word recognition. This hypothesis is
broadly consistent with frameworks such as “interactive
specialization,” in which a more efficient and specialized

Fig. 3 Dyslexia disproportionately impacts hub areas. Among the
brain areas examined in Power and colleagues [36], nodes implicated
in dyslexia have higher participation coefficients (32 nodes)
compared to the rest of the brain (232 nodes)

visual recognition system would have higher connectivity
between visual areas, in turn leading to higher modularity
in the RSN [42]. The relationship between reading and
modularity was particularly high in the visual, default
mode, cingulo-opercular networks. It is not yet possi-
ble to say whether modularity within these specific RSNs
correlates most highly with reading because of their func-
tional roles in reading processes or whether they sim-
ply capture global trends better than other networks.
There is some reason to suspect specificity, however.
In studies of remediation-induced changes to connectiv-
ity, increased connectivity within the visual network [40]
and cingulo-opercular network [43] have predicted read-
ing improvement in dyslexic children. Future work will
need to examine not just the intrinsic connectivity, but
the relationships between these networks during reading
tasks. The default mode network, for example, is typi-
cally anti-correlated with “task-positive” networks such
as the fronto-parietal network. A high degree of anti-
correlation has been reported to be important for perfor-
mance on a variety of cognitive processes [44, 45], but
recent work suggests that high modularity and connec-
tivity of the default mode during higher-level cognition
is fundamental to processes relying on self-referential
and memory retrieval processes, such as those found in
language [46]. The dynamics behind these interactions
will be important for further establishing a framework
for investigating the roles of specific networks during
reading.
The additional findings that hubs areas are key in

dyslexia are not surprising: dyslexia has often been
thought to be a disorder related to combining informa-
tion across different functional systems, and in the context
of connectomics, hub areas play this privileged role. For
example, the posterior temporal sulcus connects visual
and auditory networks by binding letters to sounds [47,
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Table 3 Participation coefficients (PC) for nodes identified in multiple dyslexia meta-analyses

Atlas label MNI coordinates Hubness Suggested network

X Y Z PC % Yeo 2011 Power 2011

L BA 47, L insula − 35 20 0 5.46 97.7 Fronto-parietal Salience

L mid. occ. gyrus − 42 − 60 − 9 5.35 97.0 Dorsal attn. Dorsal attn.

L putamen − 15 4 8 3.20 67.4 – Subcortical

L inf. par. lobule − 53 − 49 43 3.07 65.5 Default mode Fronto-parietal

L sup. temp. gyrus − 55 − 40 14 2.94 64.0 Ventral attn. Ventral attn.

L fusiform gyrus − 47 − 51 − 21 1.66 50.8 Dorsal attn. Uncertain

48] and the inferior frontal gyrus has many different
subdivisions supporting language parsing and manipula-
tion [49]. However, casting dyslexia dysfunction into a
connectomics perspective opens up new hypotheses and
research avenues. For example, the brain areas of inter-
est and neuroimaging metrics can be unified across other
developmental disorders, including ADHD, specific lan-
guage impairment, and autism [18]. Another benefit is
that it opens up many more avenues for investigating
dyslexia using functional and diffusion MRI, which can be
performed in younger children and without administering
a cognitive task.
A caveat with connectomics analyses, including those

presented here, are that results for the modularity anal-
yses are often based on RSN parcellations from previ-
ous literature [31]. However, brain organization changes
throughout development, with several studies suggesting
that at least some RSNs become less modular with age
[11]. Therefore, it is an open question as to how net-
work architecture develops over time, and how best to
measure it is under active investigation. Disentangling
this complex interchange between development, expe-
rience and network architecture will be an important
future goal.

Conclusions
Fluent readers must be masters of many cognitive pro-
cesses and efficiently pass information between the brain
areas that subserve them. Since these areas are dis-
tributed throughout the brain and across functional sub-
divisions, having an efficient network architecture is likely
to make the reading processes more rapid and pre-
cise. The results presented here support this hypoth-
esis by showing that intra-connectivity within RSNs is
correlated with reading skill, and that abnormalities in
dyslexia localize onto the hub areas that connect RSNs.
Overall, use of a connectomics framework opens up
new possibilities for investigating reading difficulty, espe-
cially its commonalities across other neurodevelopmental
disorders.

Additional file

Additional file 1: Details for 264 nodes used in graph theory analyses.
Table of node coordinates, community assignments, network measures
and implication in the three dyslexia meta-analyses. Atlas labels were
assigned using the Talaraich Daemon atlas. (CSV 20 kb)
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