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Static and dynamic postural control deficits
in aging fragile X mental retardation 1
(FMR1) gene premutation carriers
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Abstract

Background: Individuals with premutation alleles of the fragile X mental retardation 1 (FMR1) gene are at risk
of developing fragile X-associated tremor/ataxia syndrome (FXTAS) during aging. Characterization of motor issues associated
with aging in FMR1 premutation carriers is needed to determine neurodegenerative processes and establish
new biobehavioral indicators to help identify individuals at greatest risk of developing FXTAS.

Methods: We examined postural stability in 18 premutation carriers ages 46–77 years and 14 age-matched
healthy controls. Participants completed a test of static stance and two tests of dynamic postural sway on a
force platform to quantify postural variability and complexity. CGG repeat length was measured for each premutation
carrier, and MRI and neurological evaluations were conducted to identify carriers who currently met criteria for FXTAS.
Of the 18 premutation carriers, seven met criteria for definite/probable FXTAS (FXTAS+), seven showed no MRI or
neurological signs of FXTAS (FXTAS−), and four were inconclusive due to insufficient data.

Results: Compared to controls, premutation carriers showed increased center of pressure (COP) variability in the
mediolateral (COPML) direction during static stance and reduced COP variability in the anterior-posterior (COPAP)
direction during dynamic AP sway. They also showed reductions in COPML complexity during each postural condition.
FXTAS+ individuals showed reduced COPAP variability compared to FXTAS− carriers and healthy controls during
dynamic AP sway. Across all carriers, increased sway variability during static stance and decreased sway variability
in target directions during dynamic sways were associated with greater CGG repeat length and more severe neurologically
rated posture and gait abnormalities.

Conclusion: Our findings indicate that aging FMR1 premutation carriers show static and dynamic postural control deficits
relative to healthy controls implicating degenerative processes of spinocerebellar and cerebellar-brainstem circuits that may
be independent of or precede the onset of FXTAS. Our finding that FXTAS+ and FXTAS− premutation carriers differed on
their level of intentional AP sway suggests that neural mechanisms of dynamic postural control may be differentially
impacted in patients with FXTAS, and its measurement may be useful for rapidly and precisely identifying disease presence
and onset.
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Background
Mutations of the fragile X mental retardation 1 (FMR1)
gene involving > 200 cytosine-guanine-guanine (CGG) re-
peat expansions in the 5′-untranslated region cause fragile
X syndrome is the leading inherited cause of intellectual
disability. FMR1 premutations characterized by 55–200
CGG repeats are associated with subclinical psychiatric,
cognitive, and motor issues [1, 2]. Approximately one
third of aging premutation carriers also develop fragile
X-associated tremor/ataxia syndrome (FXTAS), a progres-
sive neurodegenerative disorder characterized by kinetic
tremor, gait ataxia, and Parkinsonism and involves neuro-
degenerative processes of spinocerebellar and cerebellar-
brainstem circuits [1–4]. Penetrance of FXTAS among
premutation carriers increases with age, and the onset of
motor deficits typically occurs after 50 years of age with
subsequent rapid neurological and cognitive decline [1].
Increased CGG repeat length is associated with in-

creased risk of developing FXTAS [4–8]. Cerebellar le-
sions and cerebral atrophy are common [3, 4] and serve
as part of the diagnostic criteria for FXTAS [1, 2, 9].
However, FXTAS often is misdiagnosed due to its clin-
ical overlap with other neurodegenerative disorders (e.g.,
Parkinson’s disease), especially early in its course [10,
11]. Precise approaches for quantifying neurodegenera-
tive processes associated with FMR1 premutations
across behavioral, neural, and genetic levels are needed
to advance our understanding of the cause of the dis-
ease, identify prodromal signs, and monitor disease pro-
gression and treatment outcomes.
Spinocerebellar and cerebellar-brainstem function often

is measured behaviorally using tests of static postural con-
trol during which participants stand as still as possible,
and dynamic postural control in which individuals initiate
continuous body sway along an axis. Paramedian cerebel-
lar lobules including the vermis receive afferent input both
from motor and posterior parietal cortices as well as direct
innervation from the spinal cord [12]. Spinocerebellar in-
puts provide rapid proprioceptive feedback information
that can be integrated with somatosensory, visual and ves-
tibular feedback in cerebellar-cortical networks to main-
tain postural stability. Tests of static and dynamic stances
have been used to index cerebellar dysfunctions in individ-
uals with Friedreich’s ataxia [13], psychiatric disorders
involving cerebellar-brainstem dysfunction [14], and
movement disorders such as Parkinson’s disease [15]. In
the present study, we investigated static and dynamic pos-
tural control in aging FMR1 premutation carriers in order
to characterize cerebellar-dependent motor processes.
Multiple prior studies have examined postural control

in aging FMR1 premutation carriers, but these studies
have suggested that postural control is relatively intact
in carriers who showed no signs of FXTAS [5, 10, 16].
Importantly, each prior study of premutation carriers

quantified postural control using individuals’ postural
sway area, which is an aggregate measure of body sway
in both anterior-posterior (AP) and mediolateral (ML)
directions. As increased sway variability in ML direc-
tions predicts the risk of fall in older adults [17–19] and
is used to monitor the progression of cerebellar ataxia
[13] and Parkinson’s disease [15, 20], precise quantifica-
tion of postural sway in ML directions may be more sen-
sitive to atypical neurodegenerative processes. Analyses
separating center of pressure (COP) variability in ML
and AP directions are needed to determine if postural
control mechanisms are disrupted during aging in FMR1
premutation carriers.
Assessments of dynamic postural sways in which par-

ticipants continuously move their body along an axis
(e.g., AP or ML) provide important information about
individuals’ ability to reactively refine postural sway
amplitude and velocity to maintain balance. During
dynamic sway, gravitational torque increases due to
increases in sway amplitude in the target direction. In-
creased demand to reverse postural sway acceleration
prior to the body’s center of mass approaching the
base of support boundary makes dynamic sway more
challenging to control than static stance [21, 22]. In
contrast to static stance, postural instability during dy-
namic stance is reflected by COP variability reductions
in target directions that may compensate for reduced
postural control as individuals attempt to avoid mov-
ing their body’s center of mass close to their base of
support boundary [23]. No known studies have exam-
ined dynamic postural control in aging FMR1 premu-
tation carriers.
Measurement of non-linear time-dependent properties

of individuals’ postural sway also may provide sensitive
indices of the integrity of the postural control system
[24]. Postural instability can be examined by quantifying
the complexity of the long-range correlation of the COP
time series along multiple temporal scales using the
measure of detrended fluctuation analysis (DFA) [25,
26]. DFA assumes that postural sway involves a combin-
ation of deterministic and stochastic process [25–27].
Deterministic processes represent a “stable” state allow-
ing individuals to sway within their base of support in a
predictable manner (i.e., the regularity of postural sway).
Stochastic processes reflect the integration of individ-
uals’ internal state (e.g., proprioception) and processing
of external feedback (e.g., visual, vestibular, and somato-
sensory) which affords flexibility in controlling postural
sway relative to task demands (i.e., the complexity of the
COP time series). Neurodegeneration of the cerebellum
is associated with a reduction in the ability to integrate
these spontaneous processes and a resulting reduction of
COP complexity [14, 26]. Consistent with this idea, re-
duced postural sway complexity during static stance has
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been documented in studies of aging [26], cerebellar at-
rophy [14], and Parkinson’s disease [28]. Yet, the extent
to which COP complexity is affected in FMR1 premuta-
tion carriers remains unknown.
In the present study of FMR1 premutation carriers,

we examined postural control variability and complex-
ity in both AP and ML directions across static and dy-
namic stances. All premutation carriers completed
neurological testing to determine whether they showed
clinical or radiological signs of FXTAS. We hypothe-
sized that FMR1 premutation carriers would show in-
creased COP variability during static stance compared
to healthy aging controls, with the effect more pro-
nounced in the ML direction. During dynamic postural
sways, we predicted that premutation carriers would
show reduced COP variability in target directions com-
pared to controls. For all standing postures, we hypoth-
esized reduced COP complexity in individuals with
FMR1 premutations compared to controls. We also
predicted that the severity of postural sway deficits in
premutation carriers would be related to increased
CGG repeats.
Based on the neurological and MRI testing, we also

characterized premutation carriers as either having
probable/definite (FXTAS+) or no signs of FXTAS
(FXTAS−). We expected that the FXTAS+ subgroup
would show reduced postural control relative to
FXTAS− carriers and controls.

Methods
Participants
Eighteen FMR1 premutation carriers were identified
through our fragile X clinics and postings on local and
national fragile X association listservs. Fourteen controls
matched on age and sex were recruited through commu-
nity advertisements. During an initial screening inter-
view, no premutation carriers reported any issues of
tremor or ataxia. They completed genetic testing to quan-
tify CGG repeat length, a T2-weighted MRI scan and a
structured neurological evaluation conducted by a clinical
neurologist (PK) using the International Cooperative
Ataxia Rating Scale (ICARS) [29]. All participants com-
pleted the abbreviated battery of the Stanford-Binet
Intelligence Scales, Fifth Edition [30] to characterize cog-
nitive abilities, including nonverbal fluid reasoning and
verbal knowledge (Table 1). Participants then completed
tests of static and dynamic postural stances. All study pro-
cedures were approved by the local IRB.
Both FMR1 premutation carriers and control participants

were excluded if they reported lower extremity orthopedic
surgery within the past year, or any musculoskeletal
disorder that could potentially cause atypical postural
or gait functioning, or a history of medications known
to affect motor functioning [31]. Eight participants

(seven premutation carriers, one control) reported being on
medication within 48 h of testing, including antidepressants
(selective serotonin reuptake inhibitors: wo premutation
carriers, one control who reported taking medication for
premenstrual syndrome; serotonin-norepinephrine re-
uptake inhibitors: two premutation carriers), sedatives/hyp-
notics (benzodiazepine anxiolytic: one premutation carrier;
nonbenzodiazepine anxiolytic: one premutation carrier),
synthroids (three premutation carriers), or a mood
stabilizer (one premutation carrier).

Procedure and approach
CGG repeat length
FMR1 CGG repeat length was quantified for all premu-
tation carriers. Molecular testing was conducted at Dr.
Berry-Kravis’ Molecular Diagnostic Laboratory at Rush
University. Genomic DNA was isolated from peripheral
blood leukocytes samples. The FMR1 polymerase chain
reaction (PCR) test with quantification of allele-specific
CGG repeat length was performed using commercially
available kits (Asuragen, Inc., Austin, TX).

T2-weighted magnetic resonance imaging (MRI) scan
FMR1 premutation carriers underwent a T2-weighted MRI
scan (repetition time = 6350msec; echo time = 100msec;
flip angle = 120°; field of view = 256 × 156 × 256mm3; 78
axial slices; voxel size = 1mm2 × 2mm; no gap) to test for
the presence of hyperintensities within the middle cerebel-
lar peduncle (i.e., the MCP sign), cerebral atrophy, or other
cerebral or cerebellar-brainstem alterations associated
with FXTAS [2–4]. T2-weighted scans were analyzed

Table 1 Demographics characteristics, and cognitive and clinical
scores (mean ± SD) of FMR1 gene premutation carriers and
healthy aging control participants

Characteristics Premutation carriers
(n = 18)

Controls
(n = 14)

F p

Age (year) 61.89 (7.40) 57.64 (8.92) 1.267 0.269

Height (cm) 165.95 (8.01) 167.28 (8.94) 0.196 0.661

Weight (kg) 90.31 (20.19) 79.92 (20.17) 2.087 0.159

Male (N)a 6 6 0.305 0.581

Full-scale IQ 102 (12) 112 (15) 2.685 0.112

ICARS speech 0.19 (0.54) – – –

ICARS kinetic 1.50 (2.03) – – –

ICARS oculomotor 0.75 (1.00) – – –

ICARS posture
and gait

3.00 (2.28) – – –

ICARS total 5.44 (4.98) – – –

International Cooperative Ataxia Rating Scale (ICARS) scores only available for
16 premutation carriers
aChi-square statistics
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by a trained neuroradiologist (SL) with expertise in
diseases of aging.

Neurological examination
FMR1 premutation carriers completed a structured neuro-
logical exam administered by a neurologist (PK) with ex-
pertise in ataxia and movement disorders in aging. This
exam included evaluations of movement and gait as well
as administration of the ICARS. The ICARS is comprised
of 19 sections examining postural and gait disturbances,
ataxia, dysarthria, and oculomotor functions. Higher
scores indicate a higher level of cerebellar ataxia. The
ICARS has been validated previously for diagnosis in
patients with focal cerebellar lesions [32] and Friedrich’s
ataxia [33].

Postural control assessments
Postural stability was assessed using an AMTI (Ameri-
can Mechanical Technology, Inc., Watertown, MA)
AccuGait strain gauge force platform (size 49.78 ×
49.78 cm) with a sampling rate of 1000 Hz. All partici-
pants completed tests of static and dynamic stances by
standing on the platform with bare feet shoulder-width
apart and arms resting at their sides. Participants’ foot
positions were outlined on a piece of tracing paper
placed on top of the force platform prior to the first
trial to ensure consistent placement and orientation of
the feet during each trial. During the static stance test,
participants were instructed to stand as still as possible
for three 30-s trials. During dynamic stance tests, par-
ticipants completed three 30-s trials for each of two
different self-initiated postural sways—AP and ML. For
each dynamic stance condition, participants were instructed
to sway continuously in the target direction at a comfort-
able speed and amplitude without raising their toes or
heels. Each stance trial was followed by 30 s of rest. Nine
trials (three conditions × three trials) were examined in
total. Order of administration of the static and dynamic
stance tests and the two directions of the dynamic stance
test were counterbalanced across participants.
The force and moment data collected from the force

plate were down sampled to 200 Hz and low pass fil-
tered using a fourth-order double pass Butterworth fil-
ter with a cutoff frequency of 6 Hz in Matlab 2017a
(MathWorks, Inc., Natick, MA). The COP time series
were derived from the force and moment data for each
standing posture [22]. The variability of individuals’
postural sway was quantified using COP standard devi-
ation in both the AP (COPAP) and ML (COPML) direc-
tions as we did previously [34].
The complexity of individuals’ postural sway in both

directions was quantified using the α exponent of DFA
[25, 26]. DFA is a non-linear measurement quantifying
the pattern of variation of a time series across multiple

time scales [25, 26]. Its computation is based on the as-
sumption that variations present in a system due to in-
trinsic dynamics exhibit fractal properties of long-range
correlations (see Appendix for the detailed algorithm).
In brief, the α exponent of DFA varies between 0 and 2
(i.e., 0 < α < 2) including four ranges of values separated
at 0.5, 1, 1.5, and 2. When 0 < α < 0.5 or 1 < α < 1.5, the
time series is anti-correlated with a smaller α represent-
ing increased anti-correlation and complexity of the sig-
nal. When 0.5 < α < 1 or 1.5 < α < 2, increased alpha
represents increased long-range correlation and reduced
complexity of the time series. The COP time series con-
sist of 6000 data points (30 s × 200 data points/s), which
has been shown to be sufficient for analyses of DFA [35].

Statistical analyses
The COP standard deviation and α exponent of DFA were
averaged across trials and compared between groups
(FMR1 premutation carriers vs. controls) using separate re-
peated measures ANOVAs including stance condition
(static vs. AP sway vs. ML sway) and COP direction (AP vs.
ML) as within subjects factors. The Greenhouse–Geisser
estimate was used to provide a conservative test of ANOVA
main and interaction effects for all repeated measure ANO-
VAs in which Mauchly’s test indicated a violation of spher-
icity. Statistically significant interaction effects were probed
using Bonferroni corrected post-hoc analyses. All assump-
tions of normality and homogeneity of variance were veri-
fied for each measure of postural control.
Pearson correlations were conducted to determine the

inter-relationships of posture variables found to be sig-
nificantly different between groups in our main analyses
and CGG repeat length. Due to the non-normal distribu-
tions of ICARS scores, Spearman correlations were ap-
plied to examine the relationships between COP-
dependent variables and ICARS posture and gait sub-
scale and total scores. The relationships between CGG
repeat length and each ICARS subscale score and ICARS
total scores also were examined using Spearman correla-
tions. Correlations were interpreted as significant if
∣r∣ > 0.5.
Based on the MRI and ICARS evaluations, premuta-

tion carriers were identified as having (FXTAS+) or not
having FXTAS (FXTAS−) according to published clin-
ical criteria [1, 2, 9]. FXTAS+ individuals (n = 7) in-
cluded premutation carriers with one major MRI sign
plus one major neurological sign (definite FXTAS) and
those with either one major MRI sign plus one minor
neurological sign or those with two major neurological
signs (probable FXTAS). FXTAS− individuals included
premutation carriers with no MRI or clinical signs of
FXTAS (N = 7). There was no difference between FXTAS+
and FXTAS− subgroups in the number of medications re-
ported. Four premutation carriers who failed to complete
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the neurological evaluation due to scheduling issues
(N = 2) or MRI scan due to claustrophobia (N = 2) were
excluded from analyses comparing FXTAS+ individuals,
FXTAS− individuals, and controls. Separate Kruskal–
Wallis tests were performed on COP standard deviation
and α exponent of DFA measures to examine group differ-
ences (FXTAS+ vs. FXTAS− vs. healthy controls). One-way
ANOVAs also were performed to compare age and CGG
repeat length between FXTAS+ and FXTAS− individuals.
All results were interpreted as significant if p < 0.05.

Results
Postural sway variability in FMR1 premutation carriers
and healthy controls
COP standard deviation was greater during dynamic
stances compared to static stance (stance condition main
effect: F1.304, 28.991 = 643.203, p < 0.001; Fig. 1a). COP
standard deviation was greater in the AP than in the ML
direction during static stance, whereas it was greater in
the target direction during dynamic stances (stance condi-
tion × direction interaction effect: F1.115, 28.991 = 933.867,
p < 0.001). The interaction effect of stance condition, dir-
ection, and group was significant (F1.115, 28.991 = 6.082,
p = 0.017). Relative to controls, FMR1 premutation
carriers showed increased COPML standard deviation dur-
ing static stance (FMR1 − controls = 0.071 cm, SE = 0.034
cm with F1,26 = 4.334, p = 0.047). During dynamic AP pos-
tural sway, premutation carriers showed lower COP
standard deviation in the target directions compared to
healthy controls (FMR1 − controls = − 0.668 cm, SE = 0.245
cm with F1,26 = 7.435, p = 0.011). Premutation carriers also
showed less COP sway in the target direction during the
ML condition, although this effect did not reach statistical
significance (FMR1 − controls = − 1.157 cm, SE = 0.604 cm
with F1,26 = 3.663, p = 0.067).

Postural sway complexity in FMR1 premutation carriers
and healthy controls
The α exponent of COPAP and COPML showed signifi-
cant increases during dynamic stances compared to the
static stance condition (stance condition main effect:
F1.645, 54,837 = 73.166, p < 0.001; Fig. 1b). The α exponent
was greater in the AP direction compared to the ML dir-
ection during static stance (stance condition × direction
interaction effect: F1.891, 54,837 = 121.022, p < 0.001; static
stance: COPAP− COPML = 0.108, SE = 0.016 with p < 0.001),
while it was greater in the target directions during both dy-
namic stances (dynamic AP sway: COPAP −COPML = 0.120,
SE = 0.012 with F1, 26 = 104. 534, p < 0.001; dynamic
ML sway: COPML − COPAP = 0.131, SE = 0.013 with
F1, 26 = 111.511 p < 0.001). FMR1 premutation carriers
showed a greater α exponent in the ML direction
than control participants across all standing condi-
tions reflecting reduced complexity of their COP

time series (stance condition × direction × group
interaction: F1, 58 = 7.572, p = 0.010; static stance: FMR1-
controls = 0.062, SE = 0.027, F1, 26 = 16.622, p < 0.001;
dynamic AP sway: FMR1-controls = 0.054, SE = 0.019,
F1, 26 = 24.905, p < 0.001; dynamic ML sway: FMR1-con-
trols = 0.045, SE = 0.024, F1, 26 = 4.308, p < 0.05).

Postural sway in FXTAS+ and FXTAS− carriers
Table 2 summarizes CGG repeat length, radiological
and neurological results for each FMR1 premutation
carrier. Results from the Kruskal-Wallis test showed
a group main effect of COPAP standard deviation
(χ2(2) = 12.112, p = .002) during dynamic AP sway (Fig. 3)
characterized by reduced COPAP variability in FXTAS+
individuals compared to FXTAS− individuals (χ2(1) =
7.547, p = .006) and control participants (χ2(1) = 10.776,
p = .001). No differences in COP variability for any
direction or stance were found between FXTAS− and
healthy control participants (χ2(1) = .050, p = .823). One-
way ANOVAs performed on age (F 1,12 = .733, p = .409)
and CGG repeat length (F 1,12 = 1.612, p = .228) showed
no difference between FXTAS+ and FXTAS− individuals.

Clinical associations
Greater COP variability in both the AP and ML direc-
tions during static stance was associated with higher
CGG repeats in FMR1 premutation carriers (Table 3;
Fig. 2). Lower sway variability in target directions during
dynamic AP sway also was associated with higher CGG
repeats in premutation carriers. Greater α exponent of
DFA in target directions during dynamic AP postural
sway was related to higher CGG repeats. Lower COP
variability in the AP direction during dynamic AP sway
was associated with higher ICARS posture and gait sub-
scale and ICARS total scores in premutation carriers.
None of the ICARS subscale scores were associated with
CGG repeat length (dysarthria: r = − 0.090, p = 0.742;
kinetic ataxia: r = 0.003, p = 0.991; oculomotor disorders:
r = − 0.238, p = 0.374; gait and posture: r = 0.010, p = 0.972;
total: r = 0.088, p = 0.745). CGG repeat length was not as-
sociate with any postural control variables or ICARS
scores within the FXTAS+ or FXTAS− subgroups
(Additional files 1 and 2: Tables S1 and S2).

Discussion
In the present study, we provide new evidence that dur-
ing middle to late adulthood, FMR1 premutation carriers
show reduced postural stability that is related to larger
CGG repeat expansions, and thus covaries with FXTAS
disease risk [5–8]. Four key findings are highlighted.
First, relative to controls, FMR1 premutation carriers
showed greater postural sway variability in the ML direc-
tion during static stance and reduced postural sway
along the target direction during intentional AP sway
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suggesting that spinocerebellar and cerebellar-brainstem
circuits supporting postural stability are disrupted in
aging FMR1 premutation carriers (Fig. 1a). Second, pre-
mutation carriers demonstrated reduced complexity of
their COPML time series across all standing conditions
implicating deficits in their ability to dynamically adapt
to inherent postural perturbations (Fig. 1b). Third, both
COP variability and complexity alterations in FMR1 pre-
mutation carriers were associated with higher CGG re-
peats and ICARS-rated posture, gait, and motor deficits,
suggesting that our measures may provide sensitive and
highly quantifiable biologically based markers of behav-
ioral and neurological features associated with FXTAS
risk or progression in premutation carriers (Fig. 2).

Last, FXTAS+ individuals showed reduced AP postural
sway variability during dynamic AP trials relative to
carriers without clinical signs of FXTAS (FXTAS−) and
healthy controls suggesting that mechanisms support-
ing intentional sway may be selectively disrupted in
FXTAS (Fig. 3). Our measure of dynamic AP sway thus
may be useful for rapidly and precisely differentiating
premutation carriers with and without FXTAS.

Postural control deficits in FMR1 premutation carriers
during static stance
Postural control is a continuous process during which in-
dividuals actively align their body’s center of mass within
their base of support area in response to inherent noise

Fig.1 a Center of pressure (COP) standard deviation in the anterior-posterior (AP) and mediolateral (ML) directions. b The α exponent of
detrended fluctuation analysis (DFA) of COP time series in both directions are shown as a function of standing condition. FMR1 stands for FMR1 premutation
carriers. Between-group differences are marked as * at 0.05 level and ** at 0.01 level. Error bars represent standard error
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and changes in environmental (e.g., moving to a slippery
surface) and task (e.g., when leaning forward to reach an
object; when moving from sitting to standing) demands
[21]. Increases in postural sway variability are common in
aging adults and reflect neurodegenerative processes in-
volving decreased nerve conduction velocity, deterioration
of visual, vestibular and somatosensory feedback systems,
reduced muscle strength, and degeneration of central
modulation of motoneuron pools [21, 36]. However, more
severe increases in postural sway variability and reductions
in complexity can reflect pathology of the cerebellum [13],
basal ganglia [15], or cortical motor areas [25]. In the
context of documented reductions of cerebellar and
brainstem volumes [4], deterioration of cerebellar white

matter microstructure [3], and increased rates of cere-
bellar cellular intranuclear inclusions [37] in individuals
with FXTAS, our results of greater COPML variability
(Fig. 1a) and reduced COPML complexity (Fig. 1b) in
premutation carriers implicate spinocerebellar and
cerebellar-brainstem processes independent of or prior
to the onset of FXTAS. It is possible that similar defi-
cits are evident earlier in life in premutation carriers
and thus are not reflective of neurodegenerative pro-
cesses, but instead motor control issues related to the
premutation allele. Although one prior study [38] indi-
cated that postural control is relatively intact during
middle adulthood in female premutation carriers, direct
comparisons of younger adult premutation carriers and

Table 2 CGG repeat length, international cooperative ataxia rating scale (ICARS) scores, radiological and neurological evaluations,
and clinical classification for each individual FMR1 gene premutation carriers

ID CGG repeats ICARS T2 scan Neurological exam Clinical classification

Speech Kinetic Oculomotor Gait and
posture

Total

1 87 0 0 1 1 2 Generalized WM lesion, cerebral
atropy type 1

No gait ataxia, no tremor No FXTASa

2 102 0 0 1 2 3 Generalized white matter lesion;
cerebral atrophy type 2

No gait ataxia, no tremor No FXTAS

3 58 0 0 1 3 4 (−) No gait ataxia, no tremor No FXTAS

4 58 0 0 0 2 2 (−) Tremor, no gait ataxia No FXTAS

5 62 0 1 0 1 2 Mild white matter lesion, dot-like
white matter hyperintensity

Tremor, no gait ataxia No FXTAS

6 68 1 0 0 0 1 Mild white matter lesion, dot-like
white matter hyperintensity

No gait ataxia, no tremor No FXTAS

7 80 0 0 0 1 1 Mild white matter lesion, dot-like
white matter hyperintensity,
cerebral atrophy type 2

No gait ataxia, no tremor No FXTAS

8 99 0 2 0 5 7 (−) Mild gait ataxia, mild
tremor

Probable FXTAS

9 107 0 1 2 5 8 Gait ataxia, tremor Probable FXTAS

10 81 0 1 0 4 5 Cerebral atrophy type 1 Gait ataxia, tremor Probable FXTAS

11 75 2 7 3 7 19 Gait ataxia, tremor Probable FXTAS

12 58 0 3 0 5 8 Gait ataxia, tremor Probable FXTAS

13 85 1 2 2 7 12 MCP sign, generalized white
matter lesion; cerebral atrophy
type 3

Gait ataxia, tremor FXTAS

14 93 0 5 0 3 8 Suspected MCP sign, 4th ventricle
widening, cerebral atrophy type 1,
cerebellum and brainstem atrophy

Tremor, no gait ataxia FXTAS

15 102 0 0 0 0 0 Inconclusive

16 90 0 2 2 2 6 Tremor, no gait ataxia Inconclusive

17 64 Inconclusive

18 78 Mild white matter lesion, dot-like
white matter hyperintensity

Inconclusive

11: CGG repeat length was identified from individual’s previous genetic exam at the Department of Human Genetics at Emory University School of Medicine
14: CGG repeat length was identified from individual’s previous genetic exam at the Center for Genetic Services in Corpus Christi in Taxes
(−) entry: no abnormality were identified
No entry: data were not collected
a No FXTAS: FMR1 gene premutation carriers who currently do not how radiological and neurological signs of FXTAS
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controls on our measures are needed to determine
whether postural control deficits represent atypical neuro-
developmental or neurodegenerative processes or both.

Postural control deficits in FMR1 premutation carriers
during dynamic postural sways
During dynamic postural sways, premutation carriers
showed reduced COP variability in target directions
compared to healthy aging adults. When aging individ-
uals intentionally lean in one direction, they often
present a reduced ability to approach their base of sup-
port boundaries [39]. This behavioral change during
aging servers as a compensatory mechanism for individ-
uals’ reduced ability to maintain stability or recover from
shifts in their COP [21]. Our results suggest this com-
pensatory mechanism is utilized to an even greater
degree by aging individuals with FMR1 premutation al-
leles as they counterbalanced their postural instability by
minimizing body movements away from the neutral pos-
ition during dynamic stances (Fig. 1a). Results indicating
that reduced dynamic sway is associated with longer
CGG repeat length (Fig. 2) implicate more severe spino-
cerebellar or cerebellar-brainstem dysfunctions or
degeneration for those individuals with greater CGG re-
peats. Given that greater CGG repeat length confers in-
creased risk for the development of FXTAS, our findings
also indicate that reduced dynamic sway variability may

represent an early behavioral marker of FXTAS disease
risk and progression.
Pathological postural sway is characterized by increased

local stability and reduced complexity of the COP time
series [24]. Reduced postural sway complexity in premuta-
tion carriers implicates deficient central integration of
sensory feedback processes, movement anticipation,
motor planning, and systems supporting coordinated
musculoskeletal execution of motor commands [25, 26].
Our findings of reduced COPML complexity ( α exponent
of DFA measure was within the range from 1.5 to 2
indicating increased long-range correlation and reduc-
tions in COPML complexity) in premutation carriers
are consistent with previous studies documenting pro-
gressive decay of lateral postural sway associated with
spinocerebellar and cerebellar-brainstem circuitry de-
cline in Friedreich’s ataxia [13]. Evidence of reductions
in COP variability in target directions and in stochas-
tic processes of lateral sway in FMR1 premutation car-
riers each suggest atypical deterioration of dynamic
postural control mechanisms involved in modulating
center of mass movement in relation to the base of
support [21, 34] .

FXTAS specific deficits of postural control
Subgroup analyses of carriers with and without FXTAS
suggested that reductions in dynamic AP sway variability
are specific to FXTAS+ individuals and are largely absent
in FXTAS− premutation carriers (Fig. 3). Notably,
FXTAS+ and FXTAS− individuals showed minimal over-
lap in their level of dynamic AP sway variability suggest-
ing this measure may provide a highly sensitive and
specific index of FXTAS risk or progression. COPAP dur-
ing dynamic AP sway also was the only measure of pos-
tural control that was associated with greater CGG
repeat length and ICARS posture and gait subscale and
total scores (Table 3) in premutation carriers, suggesting
that it represents a highly quantifiable biobehavioral in-
dicator of the presence of or risk for FXTAS. These find-
ings are consistent with the well-documented cerebellar
pathology present in many FXTAS patients and the cere-
bellum’s known role in postural control [3, 4]. Our
dynamic postural control tests provide significant advan-
tages over current clinical and neurological evaluations
for identifying FXTAS as they are highly precise and effi-
cient (e.g., they require 3–5 min to administer). In com-
bination with genetic and MRI exams, dynamic postural
control variability in the AP direction may serve as a re-
liable marker identifying the presence of FXTAS or help-
ing to guide clinical assessments and screening. While
further testing is needed to determine both sensitivity
and specificity of our measures across a larger number
of aging premutation carriers and assessing their utility
across male and female premutation carriers who may

Table 3 Correlation coefficients (r) between cytosine-guanine-
guanine (CGG) repeat length, ICARS posture and gait subscale
and total scores, and center of pressure (COP) measures of
FMR1 premutation carriers

Static stance Anterior-posterior
(AP) sway

Mediolateral
(ML) sway

CGG repeat length

COPAP-SD .571b − .568b − .229

COPML-SD .565b .467 − .413

COPAP-DFA alpha .049 .512b − .262

COPML-DFA alpha .368 .138 .268

ICARS posture and gait scorea

COPAP-SD 0.329 − 0.729c − 0.002

COPML-SD 0.181 − 0.394 − 0.042

COPAP-DFA alpha 0.223 0.364 − 0.417

COPML-DFA alpha 0.274 0.019 0.351

ICARS total scorea

COPAP-SD 0.459 − 0.678c 0.060

COPML-SD 0.287 − 0.224 0.044

COPAP-DFA alpha 0.104 0.232 − 0.372

COPML-DFA alpha 0.268 − 0.010 0.247

Significant values are in italics
a Spearman correlation coefficient (ρ)
b Significant at alpha level of 0.05
c Significant at alpha level of 0.01
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Fig. 2 Scatter plots of significant statistical correlations presented in Table 3. Data were color-coded based on the diagnostic classification of each
individual FMR1 premutation carrier. ICARS scores were missing for two inconclusive individuals due to scheduling issues
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present with different symptoms associated with FXTAS
[1, 40], our results suggest reduced dynamic AP sway
may be a rapid and precise measure useful for identify-
ing FXTAS in aging premutation carriers.

Neurobiological mechanisms underlying postural control
deficits in aging FMR1 premutation carriers
Our results document that increased CGG repeats are as-
sociated with increased postural sway variability in both
the AP and ML directions during static stance and de-
creased sway variability during dynamic AP sway among
premutation carriers (Table 3; Fig. 2). Previous studies
suggest that higher CGG repeats are associated with in-
creased risk for and severity of FXTAS [6–8, 41]. At the
molecular level, the CGG premutation allele results in in-
creased FMR1 mRNA levels and, in some cases, decreases
in fragile X mental retardation protein (FMRP) [42, 43].
Increased FMR1 mRNA is linked to a cumulative cyto-
toxic effect associated with intranuclear inclusions
observed in neuronal and astrocytic nuclei of the cerebel-
lum and brainstem in postmortem tissue [37, 41]. FMRP
plays an important role in RNA-binding translation and
channel-binding regulation at synapses [44] affecting the
formation of axons, myelination [45], and dendritic mat-
uration [46]. Reductions of FMRP in premutation carriers
could disrupt the microstructural integrity of white matter
in the primary fiber pathways of the cerebellum, including
the superior, middle, and inferior cerebellar peduncles, as
well as other large white matter fiber tracts such as the
corpus callosum [3]. These cellular and brain system

alterations have been documented in individuals with
FXTAS, including selective degeneration of the middle
cerebellar peduncle—the primary input pathway of the
cerebellum [2, 4, 9]. Importantly, cerebellar inputs from
neocortical regions are critical to the cerebellum’s role in
integrating internal and external sensory feedback infor-
mation in order to dynamically calibrate motor output.
Greater motor variability [34, 47, 48] and reduced sensori-
motor complexity [49] each have been demonstrated in
individuals with disorders affecting the cerebellum. The
postural control deficits reported here in premutation car-
riers thus may provide important indices of cerebellar
mechanisms contributing to clinical issues in individuals
with FMR1 premutations.

Study limitations and future directions
While the present study documents several novel find-
ings useful for identifying pre-clinical signs of FXTAS,
our results should be considered in the context of a few
limitations. First, longitudinal studies are needed to
determine how measures of postural variability and
complexity vary across ages in premutation carriers and
whether postural control issues identified in this study
are evident earlier in life in premutation carriers and
thus are not reflective of the aging process associated
with FMR1 premutation, but instead motor control is-
sues related to downstream effects of premutation al-
leles. Second, FXTAS disproportionately affects males,
and the nature of symptoms appear to vary across males
and females due to X-inactivation effects [50, 51]. Future
studies are needed to clarify postural control processes
in larger samples of male and female aging premutation
carriers and determine their course in individuals with
and without FXTAS.

Conclusions
Our results suggest that increased postural sway variability
during static stance, decreased body movement in target
directions during dynamic stance, and decreased lateral
sway complexity are present in aging FMR1 premutation
carriers compared to controls and are associated with lar-
ger CGG repeat expansions. Importantly, we also find that
FXTAS+ individuals show reduced COPAP variability dur-
ing dynamic sway relative to FXTAS− carriers, suggesting
that reductions in the ability to control AP sway may pro-
vide a highly quantifiable and rapid biobehavioral index of
FXTAS. Taken together, these results indicate that FMR1
premutation carriers experience reduced postural control
implicating cerebellar-brainstem circuits and that preci-
sion measures of postural control may provide useful
indicators of FXTAS risk or progression and important
markers of disease-related mechanisms.

Fig. 3 Scatter plot of COP standard deviation in AP directions during
dynamic AP sway. Data are color-coded based on the diagnostic
classification of FMR1 premutation carriers and healthy controls.
Box plots show (left to right) the minimum (cap), first quartile,
median, third quartile, and maximum (cap) values of each group.
Two data points in the control group were located outside of the 1.5×
inter-quartile range
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Appendix
Detrended fluctuation analysis (DFA) is a non-linear
measurement quantifying the pattern of variation of a
time series across multiple time scales [17, 20]. DFA is
based on the assumption that variations present in a
system due to its intrinsic dynamics exhibit fractal prop-
erties of long-range correlations. To calculate the α
exponent of DFA, we first let Xt represent a COP time
series and then divided it into multiple non-overlapping
time windows of equal length including n samples.
For each time window, a local linear trend was calculated
by minimizing the root mean square errors within the
window and calculating Yt as a series of straight lines
fits for all windows of the COP time series (N/n; N
stands for the total number of samples in a trial,
which is 30 sec × 200 data points/ sec = 6000 data points).
The root mean square deviation from Yt (i.e., the
fluctuation, F (n)) then was calculated using the
following formula [26]:

F nð Þ ¼ 1
N

XN

t¼1

Xt−Y tð Þ2
" #1=2

ð1Þ

This procedure was repeated over a range of differ-
ent window sizes (n), and a log10-log10 coordinate of
n against F (n) was constructed. A straight line on
this log10-log10 graph indicates statistical self-affinity
expressed as F(n) ∝ nα. The scaling exponent α is then
calculated as the slope of a straight line fit to the
log10-log10 graph of n against F (n) using least root
mean square errors. In the current study, logarithmic-
ally spaced intervals of lengths n from 4 to 2000 sam-
ples were used and the slope α of the log10–log10
representation of F (n) versus n was estimated to fall
between n = 0.02 sec and n = 10 sec. The α expo-
nent varies between 0 and 2 (i.e., 0< α < 2). When α
<0.5 or 1< α<1.5, the time series is anti-correlated
with a smaller α representing increased anti-correla-
tion and complexity. When 0.5 < α<1 or 1.5< α< 2,
the signal is consistent with a greater α value repre-
senting increased long-range correlation and reduced
complexity of the signal.
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Glossary
Force

Force is a push or a pull on an object. If the net force on an object is
not zero, then the object accelerates (or changes its velocity). Force is a
vector and has both magnitude and direction. Force recorded from a
force platform includes measurements in three dimensions, including
anterior-posterior, mediolateral, and vertical directions. Force along the
vertical direction is typically referred to as the ground reaction force.

Moment
The moment is the turning effect produced by a net force
perpendicular to the point of rotation.

COP
The point location of the vertical ground reaction force vector. The
COP represents a weighted average of pressures over the surface area
(i.e., feet) in contact with the ground. It has been used as an indirect
measure of individuals’ postural sway. The COP can be derived from
the force and moment data collected from a force platform.

COPAP
Center of pressure time series in the anterior-posterior direction.

COPML

Center of pressure time series in the mediolateral direction.
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