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Abstract

Background: A growing body of research has demonstrated associations between specific neurodevelopmental
disorders and variation in DNA methylation (DNAm), implicating this molecular mark as a possible contributor to
the molecular etiology of these disorders and/or as a novel disease biomarker. Furthermore, genetic risk variants of
neurodevelopmental disorders have been found to be enriched at loci associated with DNAm patterns, referred to
as methylation quantitative trait loci (mQTLs).

Methods: We conducted two epigenome-wide association studies in individuals with attention-deficit/hyperactivity
disorder (ADHD) or obsessive-compulsive disorder (OCD) (aged 4–18 years) using DNA extracted from saliva. DNAm
data generated on the Illumina Human Methylation 450 K array were used to examine the interaction between
genetic variation and DNAm patterns associated with these disorders.

Results: Using linear regression followed by principal component analysis, individuals with the most endorsed
symptoms of ADHD or OCD were found to have significantly more distinct DNAm patterns from controls, as
compared to all cases. This suggested that the phenotypic heterogeneity of these disorders is reflected in altered
DNAm at specific sites. Further investigations of the DNAm sites associated with each disorder revealed that despite
little overlap of these DNAm sites across the two disorders, both disorders were significantly enriched for mQTLs
within our sample.

Conclusions: Our DNAm data provide insights into the regulatory changes associated with genetic variation, highlighting
their potential utility both in directing GWAS and in elucidating the pathophysiology of neurodevelopmental disorders.
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Background
Attention-deficit/hyperactivity disorder (ADHD) and
obsessive-compulsive disorder (OCD) are common, het-
erogeneous disorders that can co-occur or occur with
other neurodevelopmental disorders (NDDs), including
autism spectrum disorder (ASD) and Tourette syndrome
(TS) [1–3]. Elucidating the etiologies and pathophysiol-
ogies of these disorders has proven challenging as they
have historically been classified based on varying clinical
profiles, rather than underlying biology [4].
ADHD is characterized by inattention, hyperactivity,

and impulsivity mostly in childhood but it can persist
into adolescence and adulthood [5–7]. ADHD affects ap-
proximately 5% of children and adolescents, and 2.5% of
adults [8]. Core features of OCD consist of recurrent
and unwanted thoughts, urges, and repetitive behaviors
or mental acts performed to reduce anxiety or a sense of
dread [9]. These behaviors and thoughts can impair so-
cial and occupational functioning in individuals with
OCD [9]. The estimated prevalence of OCD in child-
hood and adult populations is similar, approximately 1–
3% [10, 11].
Both ADHD and OCD have been the focus of consid-

erable genetic research, including a small number of
genome-wide association studies (GWAS), given their
relative heritability estimates of 70–80% and 40–65%, re-
spectively [12–16]. Both disorders have been found to be
polygenic in nature, with many common single nucleo-
tide polymorphisms (SNPs) each conferring small risks
[17–22]. However, there has been a notable lack of re-
producible GWAS findings, which may be attributed to
lack of statistical power but also heterogeneity in the dis-
orders [23–25]. Accounting for this heterogeneity by
examining symptom severity rather than diagnostic cat-
egories may help increase statistical power since individ-
uals with more severe symptoms plausibly have a larger
genetic load. The hypothesis that the manifestation of
each disorder represents extremes of a quantitative trait
may explain the heterogeneity of these disorders and the
rarity of replicable risk variants despite strong heritabil-
ity [26, 27].
In addition to genetics, epigenetic factors might mediate

the expression of ADHD and OCD. Epigenetics refers to
heritable changes to the chromatin state that are not due to
changes in DNA sequence, such as those accompanying cel-
lular reprogramming [28, 29]. DNA methylation (DNAm),
the most commonly studied human epigenetic mark, can re-
flect both genetic and environmental influences in a quanti-
tative and often stable manner [30, 31]. To that end, DNAm
states in 20–80% of CpGs in the genome are thought to as-
sociated with genetic variation to some extent [32–35], and
inter-individual variation of DNAm in a single CpG is best
predicted by an interaction between genetics and environ-
ment [30]. Research in ADHD has identified numerous

environmental risk factors including birth weight, early-life
maltreatment, lead exposure, and maternal smoking during
pregnancy [18, 36–38]. In contrast, there is currently a lack
of convincing evidence for reproducible associations between
OCD and environmental factors [14, 39].
In ADHD and OCD, a small number of DNAm stud-

ies, including candidate analyses and epigenome-wide
association studies (EWAS), have been published. Most
notably, a recent EWAS of ADHD performed on DNAm
measured in whole blood, found a large degree of het-
erogeneity across three ADHD cohorts, with no differen-
tially methylated sites replicating in the meta-analysis
[40]. Additional ADHD EWAS have been performed in
cord blood and saliva, the latter identifying differentially
methylated sites in VIPR2, a gene encoding a protein
that plays a role in circadian rhythm [41, 42]. Research
into DNAm patterns associated with OCD is more lim-
ited. One epigenetic OCD analysis reported DNAm as-
sociations proximal to genes involved in actin binding,
cell adhesion and transcriptional regulation [43]. Tar-
geted analyses have also implicated BDNF and OXTR
DNAm in OCD [44, 45].
While research into the epigenetic patterns underlying

ADHD and OCD is still relatively nascent, EWAS of
schizophrenia have provided strong evidence that epi-
genetic research can focus and strengthen genetic re-
search [46–48]. An integrated analysis of genetics and
DNAm in schizophrenia found that (1) differentially
methylated sites associated with a diagnosis of schizo-
phrenia replicated across independent cohorts, (2) differ-
entially methylated sites corresponded to known
schizophrenia GWAS loci, and (3) GWAS loci were
enriched for methylation quantitative risk loci (mQTLs)
[46, 49].
Here, we undertook a novel approach of incorporating

genetics, phenotype, and epigenetics to identify DNAm
correlates of ADHD and OCD. We hypothesized that
disorder heterogeneity would be reflected in DNAm pat-
terns and categorized individuals by their clinical profile
to aid in identifying differentially methylated sites. We
ran linear models of DNAm in ADHD or OCD cases vs.
controls and compared the results to the same analyses
run on a subset of ADHD or OCD cases selected based
on severity or number of symptoms. We then assessed
whether restricting heterogeneity of the phenotype led
to a stronger epigenetic signal. We also tested the
disorder-associated CpGs for their relatedness to nearby
genetic variation, i.e., mQTLs, and finally, assessed how
these mQTLs were positioned in independent GWAS
findings. We found that DNAm is a better discriminator
of more symptomatic cases of ADHD and OCD than the
heterogeneous, full cohorts of cases, as compared to
controls. As well, CpG sites differentially methylated
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between cases and controls, in both ADHD and OCD
analyses, were enriched for mQTL associations.

Methods and materials
Participants
Information on participants can be found in Table 1.
Participants for this study were collected from three

unique cohorts: (1) Patients with OCD and matched
controls were recruited from the Department of Psych-
iatry at the University of Michigan and surrounding
community. The lifetime and current severity of OCD
was assessed in patients with a modified version of the
Children’s Yale-Brown Obsessive Compulsive Disorder
Scale (CY-BOCS), with patients and their parents pro-
viding item scores retrospectively for the most severe
episode of OCD and item scores for current severity. (2)
Patients with ADHD or OCD were recruited through
the Province of Ontario Neurodevelopmental Disorders
Network (POND) from The Hospital for Sick Children
(SickKids Hospital; Toronto), Holland Bloorview Kids
Rehabilitation Hospital (Toronto), McMaster Children’s
Hospital (Hamilton), or Lawson Health Research Insti-
tute (London). Participants were recruited if they had a
primary clinical diagnosis of ADHD or OCD, sufficient
English comprehension to complete required testing,
and no contraindications for MRI. Diagnoses were estab-
lished using the Parent Interview for Child Symptoms
for ADHD and the CY-BOCS for OCD. (3) Age-, sex-,
and tissue-matched control samples were measured in
individuals recruited at the Ontario Science Centre in
Toronto as part of the Spit for Science study [details
published elsewhere (Crosbie et al.)] [50]. In total, 17,
262 children and adolescents between 6 and 17 years
were recruited. Participants were excluded if they had
reported receiving a diagnosis of any mental illness from
a physician or mental health professional in an elec-
tronic questionnaire (community diagnosis). Parents of
children younger than 13 years filled out the question-
naires on their child’s behalf (referred to as “parental re-
spondents”). Individuals age 15 and older completed the
questionnaires for themselves, while those between the
ages of 13 and 15 responded either for themselves or
had parents fill out the questionnaire. Our previous
work established that the incidence rates of self-reported
diagnoses of NDDs in this community sample were
comparable to population prevalence as are typically re-
ported (see OMIM 20985; OMIM 143465; OMIM

164230) [50, 51]. Approval from research ethics boards
was obtained at all participating institutions. For all pa-
tients, parental consent was obtained for children be-
tween 6 and 12 years of age. Individuals who were 13
years and older provided their own consent in addition
to parental consent.

Sample selection of ADHD and OCD and symptom
characterization
Samples selected from the three cohorts for the analysis
presented here met a number of criteria. Firstly, we im-
posed a limit of one case, ADHD or OCD, per family.
Cases could have symptoms of other disorders (e.g.,
ADHD case with some OCD symptoms) but not comor-
bid diagnoses at the time of data collection (e.g., child with
ADHD and ASD). Individuals were required to be Euro-
pean Caucasian ancestry due to the strong association be-
tween DNAm and ethnicity or heritage [52, 53]. Detailed
medication history was collected, and anyone with a
history of seizure medication (e.g., valproic acid) was ex-
cluded due to known effects on one-carbon metabolism,
the biochemical pathway in which methyl donors are pro-
duced. Following case selection, a similar number of age-
and ancestry-matched controls were chosen.
We selected ADHD and OCD cases based on cutoffs

on the SWAN and CY-BOCS, respectively [54–57]. For
the ADHD sample, a threshold of ≥ 6 symptoms based
on the SWAN was used which reflects the DSM-5 cri-
teria [9].
For the OCD sample, a threshold of CY-BOCS total

score ≥ 18 was used. We selected a slightly more conser-
vative cutoff than that suggested for the CY-BOCS
“moderate” symptom severity range. Twenty of 59 OCD
samples did not have CY-BOCS scores and as such were
excluded from analysis of the “more symptomatic” OCD
subset. However, as there were no a priori requirements
of disorder severity in the full OCD sample analysis,
these individuals were included there.

DNAm data generation and preprocessing
Saliva was collected using Oragene OG-500 (DNA
Genotek, Ottawa, ON) collection kits and stored at room
temperature as per manufacturer’s instructions. DNA
was extracted from saliva for all cases and controls using
standard techniques. Extracted DNA was sodium bisul-
fite converted using the Qiagen EZ DNA Methylation
kit (Qiagen, Valencia, CA), according to the

Table 1 Sample sizes and demographics

Cohort n study Age years (med.) Sex (% F) Array batch

control 54 Michigan (n = 19); TAG (n = 35) 4–19 (12) 27% A (10); B (9); C (35)

OCD 59 POND (n = 33); Michigan (n = 26) 7–13 (9) 44% A (16); B (15); C (28)

ADHD 22 POND (n = 22) 7–17 (8) 56% all A
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manufacturer’s protocol. All DNA samples were proc-
essed according to the manufacturer’s protocol for
DNAm analysis using the Illumina Human Methylation
450 K (450 K array) at The Centre for Applied Genomics
(SickKids). The distribution of the samples on the arrays
was randomized for all cases and controls and for age
and sex.
Raw data (IDAT files) underwent pre-processing qual-

ity control and normalization prior to analysis, using the
R package minfi [58]. Low quality probes were removed,
as measured by the detection p value, as well as probes
located on sex chromosomes, cross-reactive probes, SNP
probes, and probes targeting CpG sites within 5 bp of an
SNP with a minor allele frequency > 1%. Background
signal subtraction and control normalization were then
performed using the methods designed for the Illumina
Genome Studio software. The final output consisted of
426,551 methylation values for each sample (Beta [β]
values) ranging from 0 to 1, corresponding to the per-
cent methylated probes measured at each CpG.
Prior to statistical analysis, buccal epithelial cell (BEC)

and blood cell proportions were estimated from the
methylation data using methods similar to those de-
scribed in Houseman et al. for blood samples and Smith
et al. for saliva samples [59, 60]. We used isolated cell
types (GEO GSE46573, GEO GSE35069) as reference
methylomes to identify CpGs differentially methylated
by cell type and then predicted the cellular composition
of each saliva sample [61, 62].

Genotyping data generation and preprocessing
The samples were genotyped as part of different geno-
typing projects, on a variety of genotyping arrays: Illu-
mina HumanCoreExome, PsychArray, Omni2.5, and
Affymetrix6.0. Samples for each array type were proc-
essed separately, using the same pipeline described
below. Data for each sample was extracted from imputed
data, combined and analyzed. Samples were excluded for
the following technical reasons: if (1) their call rate was
below 97% (2), if they were found to be outliers with re-
spect to heterozygosity, where outliers are defined as a
value at a distance greater than 6 times the interquartile
range from the closest quartile, and (3) if the sex pre-
dicted from the genotypes differed from the reported
sex. SNPs were excluded if (1) their call rate was below
97%, (2) deviated from the rules of Hardy-Weinberg
equilibrium at an FDR < 1%, based on a set of homoge-
neous samples in terms of ancestry, and (3) were found
to be duplicates of other SNPs, based on position and al-
leles, in which case the one with the highest call rate
was retained. These statistics were computed using plink
v1.90 [63].
Imputation was performed separately for each project,

using Beagle v4.1 and companion program conform-gt

with default values. A/T and C/G genotyped SNPs were
removed prior to imputation. Data from phase 3, version
5 of the 1000 Genomes project, downloaded from
http://bochet.gcc.biostat.washington.edu/beagle/1000_
Genomes_phase3_v5a/b37.vcf/, was used as reference.
Principal components (PCs) were calculated from a set

of autosomal, bi-allelic ancestry informative markers
(AIM), calculated from samples from phase 3 of the
1000 Genomes project. We first pruned SNPs for linkage
disequilibrium (r2 < 0.2 in 1500 kbp windows). Then, for
each continental population, the top 1% SNPs with lar-
gest frequency differences between that population and
all others were retained. We ignored SNPs in the MHC
regions: chr8 7,000,000–13000000 [hg19] (8p23 inver-
sion) and chr6 25,000,000-34,000,000.
Samples’ AIMs were extracted from the imputed data

sets, as long as their imputation quality was AR2 > 0.8.
Hard genotype calls were used. To identify outliers with
respect to ancestry, i.e., non-Caucasian samples, data
from samples were combined with data from the 1000
Genomes project (Supplementary Figure 1). PCs were
calculated using plink v1.90, and outliers (as defined
above) were identified from each of the top 3 principal
components. Once ancestry outliers were removed, PCs
were recomputed without 1000 Genomes samples and
used as covariates in downstream statistical analyses.

GWAS datasets
Additional datasets used for investigating the relation-
ship between genotype and ADHD or OCD diagnosis at
SNPS of interest were attained through the Psychiatric
Genetics Consortium (https://www.med.unc.edu/pgc/re-
sults-and-downloads). Summary statistics from Demon-
tis et al. and IOCDF-GC and OCGAS were downloaded
to assess genotype-phenotype correlations in independ-
ent samples of European ancestry [19, 22]. The ADHD
GWAS was performed on 19,099 individuals with
ADHD (and 34,194 matched controls from the European
Caucasian subset), and the OCD GWAS was performed
on 2688 individuals with OCD and 7037 matched con-
trols [19, 22].

Statistical analyses
Analysis pipeline is summarized in Fig. 1.
Genome-wide DNAm analyses were performed for

each two-group comparison using the Limma package,
which runs a linear regression on each CpG. Sex, age,
and estimated buccal proportion were included as covar-
iates, as well as batch, where appropriate; as all ADHD
samples were run in a single batch, only controls from
the same batch were included in these comparisons.
While both buccal cell and granulocyte proportions were
estimated, these measures were strongly inversely pro-
portional and as such, the granulocyte measure was not

Goodman et al. Journal of Neurodevelopmental Disorders           (2020) 12:23 Page 4 of 15

http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_v5a/b37.vcf/
http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_v5a/b37.vcf/
https://www.med.unc.edu/pgc/results-and-downloads
https://www.med.unc.edu/pgc/results-and-downloads


included as a covariate. CpGs reported as significantly
associated with ADHD or OCD were required to have a
nominal p value < 0.05 and an absolute Δβ > 5%. Δβ is
calculated as the difference in mean DNAm (β) between
groups. While Benjamini-Hochberg correction for mul-
tiple testing was applied, it was not reported as no sites
met a threshold of q value < 0.05.
Principal component analysis (PCA) was performed on

mean-centered data using Qlucore Omics Explorer [QOE,
www.qlucore.com] for visualization of case-control clus-
tering. Silhouette scores were calculated using beta values
and Manhattan distances for clustering.
mQTL identification was performed by first identifying

all SNPs within 5 kb of any CpG significantly associated
with ADHD or OCD in the more symptomatic samples
subsets. SNPs with < 5% minor allele frequency (MAF)
in our sample (either ADHD and appropriate controls or
OCD and appropriate controls, depending on the SNP)

were removed. Alleles at each SNP were coded as “0”,
“1”, and “2”, and a Spearman correlation was run at each
SNP-CpG pair. MQTLs were identified as SNP-CpG
pairs with a Benjamini-Hochberg corrected correlation p
value < 0.05 [52].
To test if the number of OCD- or ADHD-associated

CpGs associated with mQTLs were significantly
enriched compared to background CpGs (i.e., CpGs
assayed on the EPIC array), we employed repeated ran-
dom sampling. For each disorder, we randomly sampled
a set of CpGs equal to the number of disorder-
associated CpGs, 1000 times. For each iteration, the
same methods used above for mQTL identification were
applied: first, mapping all variable SNPs within 5 kb of
each CpG, running correlations, and finally, correcting p
values for false discovery rate. The output of each iter-
ation was the sum of CpGs associated with at least one

Fig. 1 Pipeline of statistical analysis. Black boxes and arrows indicate that the analyses were performed on our ADHD and OCD cases versus controls.
Sample sizes for each comparison can be found in Table 2. Dashed boxes and arrows indicate analyses that were performed on independent samples
and previously published (Demontis et al. 2017; IOCDF-GC and OCGAS 2017); summary statistics downloaded from the Psychiatric Genetic Consortium
were used
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SNP (mQTL); combined, these 1000 sums were used to
generate a random null distribution.
Finally, a logistic regression using disorder status as

the outcome was run on each SNP that was significantly
associated with an NDD-associated CpG (3283 SNPs
correlated with ADHD-associated CpGs and 1150 SNPs
correlated with OCD-associated CpGs), using the R
package snpStats [64]. Principal components 1 and 2
calculated from the full genotyping array data were
included as covariates to account for population sub-
structure. Disorder-associated SNPs met a Benjamini-
Hochberg corrected p value < 0.05.
Summary statistics from independent GWAS were

downloaded for two sets of SNPs identified using the
prior ADHD and OCD mQTL analyses. First, all SNPs
identified as mQTLs and second, all SNPs tested in
mQTL analyses but not significantly associated with
DNA methylation, were assessed for their association to
either ADHD or OCD, as reported in each GWAS [19,
22]. Q-Q plots and genomic inflation factors (λ) were
generated from the GWAS p values of these subsets to
assess if SNPs proximal to CpGs associated with a dis-
order were more likely to be associated with the disor-
ders themselves, as indicated by positive skewing of
observed p values and larger λ values, respectively.

Results
DNAm better distinguishes more symptomatic cases of
ADHD and OCD from controls, as compared to more
heterogeneous, full case sets
DNAm profiles of all ADHD and OCD samples (n = 22,
n = 59, respectively) were compared with age-, and
tissue-matched controls (n = 35, n = 54, respectively) at
426,551 sites using linear regression and covarying for
sex, buccal cell proportion, and age. Buccal composition
was estimated using DNAm and was included as a co-
variate despite no significant differences between cases
and controls (data not shown), as cellular heterogeneity
is strongly associated with DNAm. Batch was also in-
cluded as a covariate for analysis of OCD samples and
the corresponding controls as these were run in three
batches, with equal numbers of cases and controls in
each batch. No sites were identified as significantly asso-
ciated with ADHD or OCD after Benjamini-Hochberg
correction for multiple testing (all q > 0.05). As such, we
set the criteria for significance to a nominal p < 0.05 and
|Δβ| > 5% to identify sites likely to be true associations
while remaining cognizant of the increased risk of false
positives. At this threshold, 188 CpG sites were associ-
ated with ADHD, and 82 CpGs were associated with
OCD (Supplementary Table 1). Seven sites were associ-
ated with both ADHD and OCD and mapped to the fol-
lowing genes: DNAJC15 (2 CpGs), C13orf39, DLGAP2,
and PRDM9; two CpGs were intergenic.

As both ADHD and OCD are heterogeneous disor-
ders, we repeated our analyses on subsets of cases that
included only individuals who were more symptomatic,
as determined by ≥ 6 SWAN symptoms for ADHD or
CY-BOCS total score ≥ 18 for OCD (n = 15; n = 28, re-
spectively). Of note, a higher CY-BOCS corresponds to
more severe OCD symptoms, while a higher SWAN
score is indicative of more ADHD symptoms, i.e., more
behaviors reflecting inattention, hyperactivity, or impul-
siveness. Although there were still no significant differ-
ences in buccal proportion found between cases and
controls (both p values> 0.05), differences in the distri-
bution of buccal proportion in the subset of ADHD and
controls were apparent (Supplementary Figure 2). To
better balance buccal proportion in ADHD cases and
controls, controls were stratified by cell proportion, and
eight samples were removed (remaining control samples
n = 27). As well, controls were significantly older than
the ADHD subset; this was the only comparison for
which age differed significantly between cases and con-
trols, and age was used as a covariate in all statistical
models (Supplementary Figure 3).
Linear models, identical to those run on the full co-

horts, were then applied to the more optimally matched
groups, and disorder-associated CpGs were identified
using the same criteria, i.e., nominal p < 0.05 and |Δβ| >
5%. In both ADHD and OCD, a greater number of sites
were associated with the more symptomatic subsets than
the full cohorts, which is likely due to the decreased het-
erogeneity of these subsets (299 ADHD-associated
CpGs; 137 OCD-associated CpGs; Supplementary Table
2). Additionally, many significant CpGs mapped to the
same gene, suggestive of differentially methylated re-
gions (DMRs); these included POUF6 (6 CpGs), PRDM8
(4 CpGs), SNRPN (4 CpGs), and RASGEF1C (3 CpGs)
associated with the ADHD subset, and NINJ2 (5 CpGs),
PRKG1 (4 CpGs) and CES1 (2 CpGs) associated with the
OCD subset (example DMRs shown in Fig. 2). The over-
lap in CpGs associated with both the full cohort and
more symptomatic subset was greater than expected by
chance in both ADHD and OCD (103 CpGs and 35
CpGs, respectively), as determined by random resam-
pling 1000 times (all p < 0.0001; Table 2).
To assess how well the cases clustered separately from

controls, i.e., how unique their methylation profiles were
at the disorder-associated sites, we ran PCA on all four
sets of disorder-associated sites (ADHD full cohort,
ADHD more symptomatic subset, OCD full cohort,
OCD more symptomatic subset) on the samples from
which they were derived (Fig. 3a). In both ADHD and
OCD, the more symptomatic subsets of cases clustered
farther from controls, as compared to the full cohort. As
well, PC1, which separated cases from controls in all
comparisons, accounted for a larger proportion of the
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Fig. 2 Differential methylation found in subset ADHD and OCD cohorts. CpG sites denoted by asterisks were differentially methylated in (a) CES1 in
the subset of OCD (determined by CY-BOCS ≥ 18, n = 28) and (b) RASGEF1C in the subset of ADHD (SWAN symptoms ≥ 6, n = 15), as compared to
controls. CpG sites denoted by two asterisks remained significant in full ADHD cohort. Lines represent mean methylation at each CpG in (1) controls,
(2) the subset of more symptomatic cases, and (3) remaining cases. Green bars represent CpG islands
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Fig. 3 PCA plots of NDD-associated CpGs and relative PC1 scores in controls, “less symptomatic”, and “more symptomatic” individuals with ADHD and
OCD. a Samples sizes and number of CpGs input into PCA shown in bottom, right-hand corner of each facet. b PC1 scores of PCA run on 299 CpGs
differentially methylated between controls and the more symptomatic ADHD subset, with “less symptomatic” samples included in PCA (n controls =
27, n ADHD less symptomatic = 7, n ADHD more symptomatic = 15). c PC1 scores of PCA run on 137 CpGs differentially methylated between controls
and the more symptomatic OCD subset with “less symptomatic” samples included in PCA (n controls = 54, n OCD less symptomatic = 11, n OCD
more symptomatic = 28, n = 20 removed due to missing CY-BOCS scores). Comparisons were performed using ANOVA and marked by asterisks if
significant (Tukey p values < 0.05)

Table 2 Statistical comparisons

comparison criteria for subsetting cases (n) controls (n) covariates # CpGs # overlapping CpGs

ADHD vs. controls NA 22 35 sex, age, %BEC 188 103

SWAN ≥ 6 15 27 299

OCD vs. controls NA 59 54 sex, age, %BEC, batch 82 35

CYBOCS ≥ 18 28 54 137
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total variation in the PCA performed on the subsets, as
compared to the full cohort (PC1 ADHD subset = 15%,
PC1 ADHD full = 12%; PC1 OCD subset = 10%, PC1
OCD full = 9%).
To quantify the differences observed in the PCA plots,

silhouette widths, a measure of the average distance be-
tween clusters, were compared using the beta values and
Manhattan distance (Supplementary Figure 4). In both
ADHD and OCD, average silhouette widths increased in
the subsets containing only more symptomatic cases
compared to controls. As well, among the samples in-
cluded in both the full analysis and the subset silhouette
widths were significantly greater (Wilcoxin signed-rank
p values< 0.05). We then re-introduced the less symp-
tomatic samples (ADHD n = 7, OCD n = 11) into the
PCAs of 299 ADHD subset-associated CpGs and 137
OCD subset-associated CpGs and found that PC1 scores
of these less symptomatic samples fell between more
symptomatic cases and controls (Fig. 3b, c). Overall,
these visualizations and quantitative tests all suggest that
more symptomatic cases of ADHD and OCD demon-
strate greater DNAm differences from controls.

Finally, to assess whether the difference in sample selec-
tion or CpG set was responsible for the greater separation
between cases and controls in the more symptomatic sub-
set, we performed PCA on the complete sample set using
CpGs identified from the more symptomatic cohort. As
well, we performed PCA on the more symptomatic sample
set using CpGs identified from the complete cohort, in
both ADHD and OCD samples. The more symptomatic
samples remained more distantly clustered from controls,
as compared to the complete cohort of cases (Supplemen-
tary Figure 5). Irrespective of CpG set, the methylation
patterns of the more symptomatic individuals were more
distinct from the control samples.

Disorder-associated CpGs were enriched for mQTLs
Next, we assessed disorder-associated CpGs for under-
lying mQTLs, given the common relationship between
genetic DNAm variation, especially in NDD related loci.
We filtered for variable SNPs within a 5-kb window of
the two sets of disorder-associated CpGs identified using
the more symptomatic subsets, as they had better separ-
ation from controls. We then ran Pearson correlations

Fig. 4 Boxplots of sample mQTLs identified in (a) ADHD cases and controls (n = 42) and (b) OCD cases and controls (n = 82). Cases and controls
were combined for mQTL analysis, as depicted by boxplots
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between genotypes, coded numerically, and DNAm to
identify mQTLs. Of the 299 CpGs associated with
ADHD, 263 were tested with SNPs within 5 kb, and 88%
of those (232) were significantly associated with at least
one SNP at an FDR-corrected p value < 0.05. A total of
6433 SNP-CpG pairs were tested, as one CpG could be
tested against multiple SNPs within 5 kb, and 3283 were
identified as mQTLs.
Of the 137 CpGs associated with OCD, 106 were

tested with SNPs within 5 kb, and 81% of those (86)
were significantly correlated with at least one SNP at an
FDR-corrected p < 0.05. A total of 2882 SNP-CpG pairs
were tested, and 1350 were identified as mQTLs. Select
mQTL associations identified in ADHD and OCD can
be seen in Fig. 4. For both ADHD- and OCD-associated
CpGs sets, the number of CpGs associated with at least
one mQTL was significantly enriched (p values< 0.001),
as compared to 1000 iterations of randomly sampled
CpGs (See Methods for greater detail; Supplementary
Figure 6).
Finally, we tested each SNP that was significantly asso-

ciated with an NDD-associated CpG (3283 SNPs corre-
lated with ADHD-associated CpGs and 1150 SNPs
correlated with OCD-associated CpGs as identified in
the mQTL analysis) against disorder status. No SNPs
were significantly associated with OCD after FDR cor-
rection; however, 13 SNPs within a 3.5-kb distance and

in perfect linkage disequilibrium were associated with
ADHD (p values<0.05; Supplementary Table 3). These
SNPs were intronic to the gene MAD1L1, a component
of the mitotic spindle-assembly checkpoint. This finding
suggests that DNAm may mediate the interaction be-
tween ADHD and genomic/genetic variation as this
locus.

mQTL SNPs had skewed p values in independent GWAS
of ADHD but not OCD
We assessed the summary statistics of two independent
GWAS analyses for ADHD and OCD, of European de-
cent, to examine whether mQTL SNPs, i.e., SNPs associ-
ated with disorder-associated CpGs, were independently
related to disorder status in larger sample sizes.
From the results of Demontis et al. European cohort,

we pulled all SNPs that were tested for mQTLs in the
ADHD sample; 5064 of 5294 were available, which in-
cluded 2760 of 2896 mQTL SNPs [19]. We generated
Q-Q plots of these mQTL SNPs and the remaining 2304
SNPs that were tested for mQTLs, but not significant
(Fig. 5; Table 3). The genomic inflation factor reported
for the full GWAS, testing 8,094,094 SNPs, was 1.22. By
comparison, the mQTL SNPs (i.e., those associated with
ADHD-associated CpGs) had a λ=1.47 while in the
remaining non-mQTL SNPs λ=1.23. This suggested that
the discovery of epigenotype-genotype-phenotype

Fig. 5 Q-Q plots of independently generated GWAS p values in (a) ADHD and (b) OCD. Plots show p value distribution of mQTL SNPs with disorder-
associated CpGs (left), non-mQTL SNPs proximal to disorder-associated CpGs (middle), and SNPS from the full GWAS (right)

Goodman et al. Journal of Neurodevelopmental Disorders           (2020) 12:23 Page 10 of 15



relationships was dependent on associations between
proximal SNPs and CpGs.
From the p values published in IOCDF-GC and

OCGAS (2018) European cohorts, we assessed all SNPs
that were tested for mQTLs in the OCD sample in this
study in the same manner as described for ADHD [22].
Of 2202 SNPs tested for mQTLs, 1430 were available in
the OCD GWAS, which included 737 of 1105 mQTL
SNPs and the 693 remaining SNPs that were proximal,
but not correlated with OCD-associated CpGs. Unlike
the ADHD GWAS analysis, the genomic inflation factor
of the OCD mQTL SNPs and non-mQTL SNPs was in-
flated, λ = 1.3 and 1.32, respectively, relative to the full
GWAS, λ=1.03. However, Q-Q plots showed that “infla-
tion” was limited to p values near the mid-point, while
more significant p values were larger than expected, fall-
ing below the line of equality (y = x).

Discussion
Genetic and phenotypic heterogeneity of NDDs, includ-
ing ADHD and OCD, have likely contributed to difficul-
ties in uncovering the molecular etiologies of these
disorders. Here, we found that differentially methylated
CpGs were more readily identified by epigenome-wide
analysis of both ADHD and OCD when groups were re-
duced to more symptomatic cases. Moreover, the major-
ity of these CpGs were linked to mQTLs, associating
with genetic variation at proximal SNPs.
Research into the epigenetic aberrations associated

with ASD has provided insight into how epigenetic pat-
terns in blood-derived DNA can be reflective of
heterogenous neurodevelopmental phenotypes and how
samples may be classified a priori using underlying gen-
etic variation to better define subgroups of ASD [65].
We took a similar approach using phenotype rather than
genotype to assess whether a subset of individuals with
more endorsed symptoms of ADHD and OCD were
more distinct from controls than larger, more heteroge-
neous cohorts of ADHD and OCD. To account for the
possibility of higher comorbidity rates with more severe
presentations, participants with multiple diagnoses were
excluded. In both disorders, the reduced sets of more
symptomatic cases exhibited differential methylation

from controls at a greater number of CpGs than the lar-
ger cohorts, and they clustered more distinctly from
controls. As well, multiple DMRs in both disorders ei-
ther gained significant CpGs or had larger effect sizes in
the subsets of cases with greater clinical severity (Fig. 2).
This finding speaks to the potential utility of
homogenous group of cases to improve the signal of epi-
genetic differences from controls.
In both the full OCD cohort and subset selected for

greater OCD severity, there was no clear-cut distinction
in clustering of cases and controls as visualized on a
PCA plot (Fig. 3). Of note, our severity cutoff corre-
sponded to “moderate” OCD on the CY-BOCS and chil-
dren diagnosed with moderate OCD experience daily
interference in their school and social performances;
their obsessive thoughts are described as frequent and
disturbing, and they can have difficulty controlling or
resisting urges to perform compulsions. Nonetheless, in
individuals with OCD, DNAm patterning showed greater
overlap with that of neurotypical children than the
ADHD group (versus controls). Interestingly, in brain
imaging studies of NDDs, brain structural connectivity
of individuals with ADHD differed more strongly from
controls than the structural connectivity of individuals
with OCD. Specifically, wide-spread fractional anisot-
ropy, which measures brain tissue characteristics includ-
ing fibre density and myelination, demonstrates
significant reductions in both ASD and ADHD groups
as compared to both controls and OCD groups; the
OCD group was the most similar to controls, with differ-
ences in fractional anisotropy limited to the splenium
[66]. Taken together with our findings, these results sug-
gest that ADHD may be a more distinctive condition at
the genetic, epigenetic and neurological levels than OCD
as compared to neurotypical children.
We found 7 CpGs mapping to 5 genes (C13orf39,

C17orf54, DNAJC15, LLGL2, POLS) that were associated
with both ADHD and OCD in the more symptomatic
samples (Supplementary Table 2). Additionally, both dis-
orders were associated with altered DNAm at CpGs
mapping to MAD1L1, MGC87042, PTPRN2, and SGK2;
however, the specific associated CpGs were unique to
each disorder. Notably, MAD1L1 has previously been as-
sociated with ADHD, as reported in an EWAS of DNAm
data measured in saliva samples on the Illumina 450K
HumanMethylation array [42]; Wilmot et al. found four
CpGs mapping to MAD1L1 associated with ADHD at a
nominal p value< 0.05 and Δβ > 2% [42]. In our sample,
two CpGs in this gene were associated with ADHD
(cg12376829, p value< 1.7 × 10–4, Δβ = − 6.9%;
cg17545141, p value< 0.044, Δβ = 5.7%), and one was as-
sociated with OCD (cg03075889, p value< 0.037, Δβ =
16.1%). In sum, many of our findings suggest that there
may be common epigenetic dysregulation across

Table 3 Comparative genomic inflation factors (λ)
Disorder subset n CpGs tested Sample λ

ADHD Full GWAS 8094094 1.22

mQTL SNPs 2760 1.47

non-mQTL SNPsa 2304 1.23

OCD Full GWAS 8409516 1.03

mQTL SNPs 737 1.30

non-mQTL SNPsa 693 1.32
aWithin 5 KB of disorder-associated with CpG
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multiple NDDs as has been demonstrated previously for
genomic variation.
The MAD1L1 gene has previously been reported as

containing risk variants associated with both bipolar dis-
order and schizophrenia, in multiple studies, and more
recently, with ADHD and anxiety [67–71]. In our ana-
lysis, MAD1L1 contained the only SNPs significantly as-
sociated disorder status; 13 SNPs in perfect linkage
disequilibrium were associated with ADHD. This gene
specifically merits further research with respect to both
the genetic and epigenetic variation in associations with
NDDs.
Assessing OCD- and ADHD-associated CpGs for asso-

ciations with genetic variation, we discovered that 81%
and 88% of significant sites were linked to mQTLs, re-
spectively. These proportions are relatively high given
that depending on tissue and developmental timing, be-
tween 20–80% of CpGs are predicted to be mQTL-
associated [32–35]. This finding was consistent with pre-
vious research into epigenetic correlates of ADHD and
schizophrenia, but this is the first demonstration of this
finding for OCD [40, 48, 72]. In the context of schizo-
phrenia, mQTLs have been proposed as representing
SNPs with a functional annotation [40, 48]. The genetic
variation across individuals harboring different SNPs can
be associated with a regulatory change that is mediated
by a specific DNAm change. Based on this postulation,
we tested whether our mQTL SNPs, i.e., SNPs associated
with disorder-associated CpGs, were more likely to be
associated with disorder status in large, independent
GWAS analyses run on ADHD and OCD groups. Using
the summary statistics of our mQTL SNPs as compared
to the whole genome, we saw a stronger trend towards
lower p values in ADHD, but not OCD. One interpret-
ation of this finding is that there is a stronger
epigenotype-genotype-phenotype correlation in ADHD
than OCD and therefore, incorporating DNAm into
ADHD genetic research may be particularly fruitful as it
has been in schizophrenia research. Although the OCD
GWAS we used was the largest study to date, it is still
likely underpowered, with no reported SNPs meeting
genome-wide significance. As such, we cannot defini-
tively say that DNAm would not be informative in future
OCD GWAS analyses.
Our findings were limited by common issues that

affect epigenetic research in NDDs. DNAm is strongly
associated with tissue/cell type and here, we have ana-
lyzed saliva DNAm in cases and controls rather than
brain, which is arguably the tissue of interest. As correla-
tions between saliva and brain tissue are limited, we
hesitate to interpret potential effects of these DNAm
patterns on brain pathophysiology and how they relate
to ADHD or OCD etiology. Nonetheless, DNAm studies
in accessible tissues, such as saliva and peripheral blood,

have contributed to the understanding of the patho-
physiology of complex diseases, gene-environment inter-
actions, and effects of prenatal exposures, all of which
are pertinent to the study of neurodevelopmental disor-
ders [48, 60, 73, 74]. As well, such accessible, quantita-
tive measures may prove useful as molecular markers of
each disorder, potentially prior to clinical presentation
and predictive of later behavioral outcomes.
Furthermore, our study sample was small and likely

underpowered, especially given that common genetic
variants are believed to have small contributions to dis-
order risk, and it is plausible that similar effects are seen
in epigenetics. However, based on our findings, we argue
that the reduced power of selecting a subset of cases
may be offset by the increased effect size, as seen in our
DMRs. Finally, as both ADHD and OCD are believed to
represent extremes of quantitative traits, it is likely that
our control samples reflect the normative degree of het-
erogeneity seen in SWAN and CY-BOCS measures [56].
As such, our findings were likely affected by the ranges
of non-syndromal ADHD and OCD traits in the control
group. Future studies would ideally measure ADHD or
OCD in both cases and controls to have a better under-
standing of the range of phenotypic variability and over-
lap in each group prior to assessing DNAm.

Conclusions
The enrichment of mQTLs in NDD-associated CpGs
sites, presented here and in previous research studies,
highlights the utility of DNAm as both an asset to gen-
etic NDD research and a potential biomarker in itself.
The DNAm patterns in ADHD and OCD provide evi-
dence of potential epigenetic biomarkers mirroring the
phenotypic heterogeneity of these NDDs. Across all
NDD research, it is plausible that reducing NDD cohorts
to more homogenous subgroups may be a useful method
in uncovering stronger molecular correlates as we have
shown here.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s11689-020-09324-3.

Additional file 1: Supplementary Figure 1. Principal components 1
and 2 from principal component analysis (PCA) of our samples and
samples from phase 3 of the 1000 Genomes project. PCA was calculated
from ancestry informative markers (AIM). Plotted samples included our
control, ADHD and OCD samples (black) and 1000 Genomes project
samples grouped into the following ancestries: African (AFR), Americas
(AMR), East Asian (EAS), European (EUR), and South Asian (SAS). Samples
represented by black a “X” were identified as outliers (see Methods) and
were removed prior to analysis.

Additional file 2: Supplementary Figure 2. Distributions of predicted
buccal epithelial (buccal) and granulocyte (gran) proportions in “more
symptomatic” ADHD subset (n = 15) versus all controls (A; n = 35) and
subset of controls (B; n = 27). Underlying cell proportions of saliva
samples were predicted from DNAm data using methods described in
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Smith et al. (2015). (A) Subset of ADHD samples selected based on ≥6
SWAN symptoms (n = 15) with visibly different cell proportions than
corresponding controls (although means did not differ significantly, p-
values >0.05). (B) Same subset of ADHD samples and selected controls,
chosen to better balance buccal and granulocyte proportion.

Additional file 3: Supplementary Figure 3. Age distribution of cases
and controls in each comparison. Ages of participants used in full OCD
cohort vs. controls, (top left) full ADHD cohort vs. controls (bottom left),
subset of more symptomatic OCD cases with CYBOCS scores ≥18 vs.
controls (top right), and subset of more symptomatic ADHD cases with
SWAN scores ≥6 vs. controls (bottom right). Asterisk denotes significant
difference in mean ages between groups (p-value<0.05).

Additional file 4: Supplementary Figure 4. Silhouette plots
generated on betas values using Manhattan distance, using the same
samples and CpGs as displayed in Figure 3a. (A) all OCD samples and
controls (n = 113, CpGs = 82); (B) more symptomatic OCD samples and
controls (n = 82, CpGs = 137); (C) all ADHD samples and controls (n =
57, CpGs = 188); (D) more symptomatic ADHD samples and controls (n =
42, CpGs = 299).

Additional file 5: Supplementary Figure 5. More symptomatic cases
cluster more distinctly from controls using CpGs identified in the full
cohorts, than full cohorts using CpGs identified in the subsets. PCAs were
run on subsets using NDD-associated CpGs identified in full cohorts, and
on full cohorts using NDD-associated CpGs identified in subsets. Samples
sizes and number of CpGs input into PCA shown in bottom, righthand
corner of each facet.

Additional file 6: Supplementary Figure 6. Random distribution of
CpGs associated with at least one mQTL from sets of 299 CpGs (left) and
137 CpGs (right). Sets of CpGs randomly sampled from preprocessed EPIC
array data 1000 times were correlated against SNPs to generate
distributions of expected numbers of mQTL-associated CpGs identified
(top) and expected proportions of mQTL-associated CpGs. Red lines rep-
resent numbers of ADHD- or OCD-associated CpGs found to be associ-
ated with at least one mQTL.

Additional file 7: Supplementary Tables S1, Table S2, Table S3.
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