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Abstract
Background Attention deficit hyperactivity disorder (ADHD) is a common childhood neurodevelopmental disorder, 
affecting between 5% and 7% of school-age children. ADHD is typically characterized by persistent patterns of 
inattention or hyperactivity–impulsivity, and it is diagnosed on the basis of the criteria outlined in the Diagnostic 
and Statistical Manual of Mental Disorders, Fifth Edition, through subjective observations and information provided 
by parents and teachers. Diagnosing ADHD in children is challenging, despite several assessment tools, such as 
the Swanson, Nolan, and Pelham questionnaire, being widely available. Such scales provide only a subjective 
understanding of the disorder. In this study, we employed video pixel subtraction and machine learning classification 
to objectively categorize 85 participants (43 with a diagnosis of ADHD and 42 without) into an ADHD group or a non-
ADHD group by quantifying their movements.

Methods We employed pixel subtraction movement quantization by analyzing movement features in videos of 
patients in outpatient consultation rooms. Pixel subtraction is a technique in which the number of pixels in one frame 
is subtracted from that in another frame to detect changes between the two frames. A difference between the pixel 
values indicates the presence of movement. In the current study, the patients’ subtracted image sequences were 
characterized using three movement feature values: mean, variance, and Shannon entropy value. A classification 
analysis based on six machine learning models was performed to compare the performance indices and the 
discriminatory power of various features.

Results The results revealed that compared with the non-ADHD group, the ADHD group had significantly larger 
values for all movement features. Notably, the Shannon entropy values were 2.38 ± 0.59 and 1.0 ± 0.38 in the ADHD 
and non-ADHD groups, respectively (P < 0.0001). The Random Forest machine learning classification model achieved 
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Background
Attention deficit hyperactivity disorder (ADHD) is 
a common childhood neurodevelopmental disorder 
characterized by an ongoing pattern of inattention or 
hyperactivity–impulsivity that leads to functioning or 
developmental problems [1]. Symptoms appear before 
age 12 and have potential to cause substantial impair-
ments in multiple settings, such as school, work, and 
interactions with family or peers [2]. Such influences 
profoundly affect children’s academic achievement, well-
being, and social interactions. ADHD is highly prevalent 
in children, adolescents, and young adults worldwide, 
affecting between 5% and 7% of children and adoles-
cents, with a higher incidence in boys (boy: girl ratio in 
the range between 3:1 and 4:1) [3]. ADHD is not solely 
a childhood disorder; it often persists into adulthood 
and old age [2]. Because of the high incidence of adverse 
functional outcomes in ADHD, diagnosis and treat-
ment of the disorder are critical clinical concerns [4]. 
The typical diagnostic procedures of ADHD employed 
by psychiatrists, neurologists, pediatricians, and family 
practitioners are primarily based on subjective assess-
ments of perceived behavior. Since 1998, the American 
Medical Association has suggested that approaches to 
diagnosing ADHD involve (1) a comprehensive inter-
view with the child’s adult caregivers, (2) a mental sta-
tus examination of the child, (3) a medical examination 
for general health and neurological status, (4) an assess-
ment of cognitive ability and achievement, (5) an ADHD-
focused parent and teacher rating assessment conducted 
using specific scales, and (6) school reports and other 
adjunctive evaluations (e.g., speech or language assess-
ment) [5]. Diagnosing ADHD in children remains chal-
lenging despite the widespread availability of various 
assessment tools, including the Swanson, Nolan, and 
Pelham (SNAP) questionnaire, the Vanderbilt ADHD 
Diagnostic Rating Scale, and the visual analog scale [6]. 
Of these, the SNAP questionnaire is the most frequently 
employed and comprises three subscales, that is, inatten-
tion, hyperactivity–impulsivity, and symptoms of opposi-
tional defiant disorder subscales. These assessment tools 
are based on scale ratings assigned by teachers or par-
ents and diagnoses made by specialists [1]. Hence, these 
scales only provide subjective perspectives and may lead 

to biased diagnoses. Until now, a scientific and objective 
tool for ADHD diagnosis needs to be established.

Image processing has long been employed in video 
surveillance [7]. Recently, image processing has been 
applied to investigate nuances in human movements [8]. 
Movement detection involves tracking moving objects 
by using an algorithm [7]. A common movement detec-
tion method is pixel subtraction of two consecutive gray 
images after separation of frames from a video. Devi et 
al. demonstrated that the frame subtraction method is 
an efficient alternative means of comparing image pixel 
values in subsequent frames captured 2  s apart when 
two frames are being used to detect movement. In this 
method, the first frame is used as a reference, and the 
second is used to calculate the movement of an object. 
The comparison of these two frames or images is per-
formed by calculating differences in pixel values [8, 9]. 
Patients with ADHD often exhibit increased activity, and 
therefore, movement analysis may serve as an objective 
diagnostic tool for the condition [10, 11]. Therefore, the 
present study employed pixel subtraction and machine 
learning models to develop an objective diagnostic test 
for ADHD.

Methods
Participants
We included 43 children who had received a diagnosis of 
ADHD (24 boys and 19 girls, age [mean ± standard devia-
tion (SD)]: 7 years 6 months ± 2 years 1 month) and 42 
children who had not received a diagnosis of ADHD (21 
boys and 21 girls, age [mean ± SD]: 7 years 9 months ± 2 
years 2 months). No significant difference was observed 
between the ages of the children in the ADHD and non-
ADHD groups. Diagnoses of ADHD were based on the 
Diagnostic and Statistical Manual of Mental Disorders 
(DSM)-V criteria, and ADHD severity was assessed using 
the SNAP IV. A continuous performance test (CPT) was 
used to measure the sustained and selective attention in 
patients with ADHD. Patients were excluded who had 
a history of severe intellectual disabilities, had abused 
drugs, had head injuries, or had received a diagnosis of 
psychotic disorders. The diagnoses in the patients with-
out ADHD were headache, epilepsy, and dizziness, which 
were common in pediatric neurology. For each patient, 
a family member or legal guardian provided written 

the most favorable results, with an accuracy of 90.24%, sensitivity of 88.85%, specificity of 91.75%, and area under the 
curve of 93.87%.

Conclusion Our pixel subtraction and machine learning classification approach is an objective and practical method 
that can aid to clinical decisions regarding ADHD diagnosis.

Keywords Attention deficit hyperactivity disorder, Video analysis, Pixel subtraction, Machine learning, Swanson, 
Nolan, Pelham questionnaire
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informed consent for their child’s participation. The ethic 
regulations were conducted in accordance with the Dec-
laration of Helsinki. Ethical approval was obtained from 
the Institutional Review Board of Kaohsiung Medical 
University Hospital [KMUIRB-SV (I)-20190060].

Movement Recording and Analysis
We used pixel subtraction quantification to analyze 
video footage obtained during consultations with a pedi-
atric neurologist. We used a two-dimensional camera 

(I-Family IF-005D) to record movement videos of each 
patient. The videos were captured at a sampling rate of 
30  Hz and a resolution of 1280 × 720 pixels. The video 
recorder was placed in a fixed, unobtrusive position in 
the consultation room, as illustrated in Fig. 1. Our pixel 
subtraction method and movement analysis diagram 
are presented in Fig.  2. The input video frames, origi-
nally in color, were three-dimensional; we converted 
them to grayscale images. For example, consider the 
first two frames of the video sequence, referred to as the 
first frame ( f1) and the second frame ( f2). The original 
color images of these frames are shown in Fig. 2a and b, 
while their corresponding grayscale images are shown in 
Fig. 2c and d. This conversion significantly reduced com-
putational time without compromising the results of the 
movement analysis. After obtaining a series of sequential 
grayscale images, pixel subtraction was performed pair-
wise for each consecutive image pair. Assuming the video 
was captured at a sampling rate of 30 Hz, the frames were 
numbered (f1, f2, . . . f30)  for the first second of the 
video. Pixel subtraction for the first pair was calculated 
as |f2 − f1|, followed by |f3 − f2|, and so forth, up to 
|f30 − f29|. This process was repeated for each consecu-
tive frame pair that defines the temporal dimension of 
the video, resulting in a series of pixel-subtracted images 
tracked only within the region of interest (ROI), as shown 
in Fig. 2c and d. The ROI, depicted as the red rectangu-
lar region, was used to limit the analysis to the relevant 
area. The resulting pixel-subtracted image is shown in 

Fig. 2 Diagram of the pixel subtraction method

 

Fig. 1 Video recorder view in the consultation room
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Fig. 2e. The final pixel-subtracted image was obtained by 
filtering with a significant movement threshold, shown 
in Fig.  2f. The detailed definitions of the ROI and the 
significance movement threshold will be explained in 
subsequent sections. The series of subtracted images 
that were obtained were used for movement analysis. 
Because each patient’s consultation time varied, the ini-
tial 4  min of video recording were employed for move-
ment analysis to minimize comparison bias. When the 
patients visited the pediatric neurologist, they sat on a 
medical chair. If the child maintained a stable sitting pos-
ture over time, the pixel values for consecutive images 
did not markedly differ, and consequently, the calculated 
frame-by-frame subtraction values of the pixel subtrac-
tion were approximately zero. By contrast, if the patients 
exhibited fidgeting behavior, such as swaying or swivel-
ing, the pixel values differed, resulting in large values 
in the calculated frame-by-frame subtraction. A previ-
ous study demonstrated that all measured human body 
movements are contained within the frequency of 20 Hz 
[12]. Therefore, to explore whether different sampling 
rates affect the performance of pixel subtraction and 
machine learning classification, we evaluated various 
sampling rates when implementing pixel subtraction. For 
example, let Q = (f1, f2, . . . , f30) be the sequence of 
frames of the first second in a video. If we obtain five sub-
tracted images per second, the original 30 Hz video will 
be downsampled to 6  Hz. That is, after downsampling, 
Q′ = (f ′

1 , f ′
2 , . . . , f ′

6 ) = (f1, f6, . . . , f30). The downs-
ampling of the corresponding subtracted image sequence 
Q′  was defined as follows.

 

Q′ = (f ′
1 , f ′

2 , . . . , f ′
d−1)

=
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where d represents the value of the downsampling rate; 
S represents the value of the original sampling rate mul-
tiplied by the number of selected video frames, which 
is 30  Hz per second; and F  represents the value of the 
number of selected video seconds.

Accordingly, in downsampling to 6 Hz, five subtracted 
images are obtained per second, resulting in a 4-minute 
video comprising 1,200 consecutive subtracted images. 
In our approach, when no substantial movement differ-
ence was observed, the pixel values of any two consecu-
tive images were approximately equal. Thus, the output 
pixel value was near zero after pixel subtraction, and 
the pixels in the output image were nearly opaque. By 
contrast, if any change or movement occurred between 
the capture of the two input images, the light portion 
of the subtracted image (Fig.  2e) indicated a movement 

difference. Using this pixel subtraction technique, we 
identified small movements in our participants that were 
imperceptible to the naked eye.

In the present study, movement was identified and 
tracked only within the ROI representing the partici-
pant’s movement in the subtracted images to avoid the 
influence of other individuals on the analytical results. 
Moreover, because each patient’s height varied, slight 
differences exist in the defined ROI for each patient. 
Therefore, we selected the corresponding ROI region 
from the subtracted image sequence Q′  for each patient, 
obtaining the ROI  subtracted image sequence. The ROI 
is depicted as the red rectangular region as shown in 
Fig. 2c and d. We set a threshold θ  for the pixel value. 
For example, if the difference in pixel values in the first 
subtracted image |Q′

1 (i, j)| exceeded the threshold θ,
, ROI1 (i, j) was set to 1; otherwise, it was set to 0. In 
dynamic image processing, all pixels in ROI1 (i, j) with 
the value of 1 were considered to be the result of move-
ment [13]. This process was then repeated for subsequent 
image sequences. The significance movement within the 
ROI1, as shown in Fig. 2f, was defined as follows:

 
ROIk (i, j) =

{
1, if Q′

k (i, j) > θ
0, otherwise , (i, j) ∈ SA, k = 1,2, . . . , N  (2)

where ROIk (i, j) represents the pixel value in the kth 
frame within the ROI, with i and j representing the pixel 
x and y coordinates, respectively. SA represents the set 
of image coordinates corresponding to the ROI, N  rep-
resents the number of subtracted images in the 4-minute 
video. θ  represents the threshold value. Based on our 
experiment, the threshold pixel value θ  is a constant 
value [13] and was set to 100, which was determined to 
represent significant movement.

The sum of the pixels in each subtracted frame was 
calculated to quantify the extent of patient movement in 
each subtracted frame. The resulting vector character-
izes patient movement throughout the entire video. The 
sequence of movement along the measurement vector 
M  was defined as follows:

 M = (m1, m2, m3, . . . , mN ) (3)

where 

 
mk =

∑
(i,j)∈ SA

ROIk (i, j) , k = 1,2, . . . , N

where ROIk (i, j) represents the pixel value in the kth 
frame within the ROI, with i and j representing the pixel 
x and y coordinates, respectively.

Patients with ADHD often exhibit fidgeting behav-
ior when seated or exhibit noticeable movement. This 
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movement can be quantified through the mean ( µ ), vari-
ance ( −

var), and Shannon entropy ( −
se), which were used 

in this study to analyze the movement vector.
Greater average movement indicated fidgeting. The 

mean movement in the sequence M  was defined as 
follows:

 
µ = 1

N

∑ N

k=1
mk (4)

where mk represents the value of M  corresponding to 
the kth frame.

Greater variance in movement was considered to indi-
cate greater fidgeting. To avoid the influence of outliers 
when calculating the variance directly from the move-
ment sequence, we use a sliding window to calculate the 
variance for each time window, and then computes the 
average of the variances across all time windows. The 
averaged variance in movement of the sequence M  was 
defined as follows:

 
−

var= 1
L

∑ L

k=1
V ar (Mk) , L = N − W  (5)

where V ar (Mk) = 1
W

∑ W
i=1

(
mj+i−

−
Mk

)2

where Mk = (mj+1, mj+2, . . . , mj+W ), j = W (k−1)
2  

represents the kth movement subsequence of M , with 
a window size of W and L indicates the number of 
movement subsequences. Additionally, the window and 
overlapping sizes were set to 5 and 2.5  s, respectively. 

V ar (Mk) represents the variance of Mk , and 
−

Mk rep-
resents the mean of Mk .

Greater entropy in movement was considered to indi-
cate irregular and unpredictable patient movement. 
Accordingly, we used Shannon entropy to extract patient 
movement rhythm. Shannon entropy is used to calculate 
entropy on the basis of the probability distribution of 
movement. The higher the entropy value is, the greater 
the information content of the movement sequence and 
the greater the unpredictability and complexity of the 
movement are. To avoid the influence of outliers when 
calculating Shannon entropy directly from the move-
ment sequence, we use a sliding window to calculate the 
Shannon entropy for each time window and then com-
pute the average of the Shannon entropies across all time 
windows. The averaged Shannon entropy for movement 
of the sequence M  was defined as follows:

 
−
se= 1

L

∑ L

k=1
SE (Mk) , L = N − W  (6)

where 

 SE (Mk) = −
∑ W

i=1
Pmj+i

log2(P mj+i
)

where SE (Mk) represents the Shannon entropy of Mk, 
and Pmk+i  represents the probability of occurrence of 
mk+i in the movement sequence Mk .

Feature discriminability analysis
To evaluate the discriminability between the ADHD 
and non-ADHD groups in terms of each movement fea-
ture, we employed classification analyses based on six 
machine learning methods: support vector machines 
(SVM), random forest, decision tree, k-nearest neighbor 
(KNN), adaptive boosting (AdaBoost), and extreme gra-
dient boosting (XGBoost). The machine learning library 
scikit-learn was utilized for comparative analysis [14]. We 
employed nested cross-validation to optimize the model 
hyperparameter and evaluate the model’s classification 
performance. The outer loop employs 10-fold cross-val-
idation for model training and testing. During each itera-
tion of the outer loop, 1-fold of ADHD and non-ADHD 
patients’ movement features are used as the test dataset, 
while the remaining 9-fold of ADHD and non-ADHD 
patients’ movement features are used as the training 
dataset. The training dataset obtained from each outer 
loop iteration is then used for model hyperparameter 
optimization and model training. The hyperparameter 
optimization uses grid search and 5-fold cross-valida-
tion to identify the suitable parameters for each machine 
learning classification model. Therefore, the grid search 
for tuning the hyperparameters of each classification 
model was defined as follows:

1. Support vector machine (SVM): The kernel type of 
the SVM was specified as the radial basis function. 
The model parameters “gamma” and “C” were 
optimized using a grid search within the ranges {50, 
100, 300, 500} and {0.001, 0.01, 0.1, 1}, respectively. 
Default values were used for all other parameters in 
the library.

2. Random forest: The model parameter “n-estimators” 
was optimized using a grid search within the ranges 
{1, 5, 10, 20, 30, 50}. Default values were used for all 
other parameters in the library.

3. Decision tree: The tree algorithm of the decision tree 
was specified as the CART. The model parameter 
“max-depth” was optimized using a grid search 
within the ranges {1, 2}. Default values were used for 
all other parameters in the library.

4. K-nearest neighbor (KNN): The model parameter 
“n-neighbors” was optimized using a grid search 
within the ranges {1, 2}. Default values were used for 
all other parameters in the library.
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5. Adaptive boosting (AdaBoost): The weak classifiers 
of the AdaBoost was specified as the CART tree 
algorithm. The model parameter “n-estimators” was 
optimized using a grid search within the ranges {1, 5, 
10, 20, 30, 50}. Default values were used for all other 
parameters in the library.

6. Extreme gradient boosting (XGBoost): The weak 
classifiers of the AdaBoost was specified as the 
CART tree algorithm. The model parameters “max-
depth”, “learning rate” and “n-estimators” were 
optimized using a grid search within the ranges {1, 
2}, {0.1, 0.2}, and {1, 5, 10, 20}, respectively. Default 
values were used for all other parameters in the 
library.

To minimize biased comparisons of classification results 
among different movement features with different 
machine learning classification models, the resampling 
strategy of nested cross-validation was repeated 10 times. 
Consequently, a total of 100 pairs of training and testing 
datasets were obtained. The training datasets were used 
to train each classification model, and the testing datasets 
were used to evaluate the classification performance of 
the trained classification model.

Feature error estimation and analysis
To evaluate the reliability of classification performance 
metrics for different movement features across various 
machine learning classification models, we calculated 
the standard error of the mean (SEM) [15] for each clas-
sification model and movement feature. Although nested 
cross-validation was repeated 10 times in this study, to 
mitigate potential overfitting and identify the movement 
feature with the best performance and the smallest error 
range across sampling iterations, we further quantified 
this variability. Therefore, SEM was employed to quan-
tify the variability in classification performance across 

multiple iterations of cross-validation, providing error 
estimates for the different performance metrics of each 
classification model. The SEM for classification perfor-
mance metrics across multiple iterations of cross-valida-
tion was defined as follows:

 
SEM = σ√

n  (7)

where σ  represents the standard deviation of one of the 
performance metrics across multiple iterations of cross-
validation, and n represents the number of iterations, 
which was set to 100 in this study, corresponding to the 
total number of training and testing dataset pairs.

Statistical analysis
All statistical analyses were conducted using SAS v. 9.4; 
(SAS Institute, Cary, NC, USA). The results are presented 
as means ± SDs. Patients with ADHD and non-ADHD 
were compared in terms of their movement features by 
using the two-sample t-test and their sex distribution was 
compared by using chi-squared test. A P value < 0.05 was 
considered significant.

Results
No significant difference in patient sex and age were 
observed between the ADHD and non-ADHD groups. 
Table  1 presents the average score (mean ± SD) on the 
SNAP IV rating scale assessed by parents and teachers. 
No SNAP rating was available for the non-ADHD group. 
In total, 20 boys had ADHD-C, 2 boys had ADHD-I, 
and 2 boys had ADHD-H; 14 girls had ADHD-C, and 5 
girls had ADHD-I. According to the literature, ADHD-
C and ADHD-H are the most prevalent subtypes of 
ADHD (78.0–81.7%), followed by ADHD-I (18.3–22.0%) 
[16–18]. In the present study, 36 of the 43 patients had 
ADHD-C or ADHD-H. Therefore, most of the recruited 
patients exhibited combined or hyperactivity symptoms. 
The SNAP IV total scores obtained from parents and 
teachers were 34.16 ± 18.37 and 31.09 ± 18.31, respec-
tively. To compare the classification results between the 
ADHD and non-ADHD groups that were obtained using 
various downsampling rates, we conducted experiments 
in which we downsampled the original video from 30 Hz 
to 15 Hz or 6 Hz or retained the original sampling rate of 
30  Hz. We subsequently used a t test to compare three 
movement features between the ADHD and non-ADHD 
groups. The results are presented in Table 2. The ADHD 
group had higher values for all three movement features, 
and the movement features significantly differed between 
the ADHD and non-ADHD groups. Notably, the Shan-
non entropy values were 2.38 ± 0.59 and 1.0 ± 0.38 in the 
ADHD and non-ADHD groups, respectively (P < 0.0001). 
The machine learning classification model achieved the 

Table 1 Demographic data of patients with ADHD and Non-
ADHD

ADHD Non-ADHD p Value
Sex (M/F)⊚ 24/19 21/21 0.749
Age* 7y6m ± 2y1m 7y9m ± 2y2m 0.476
Parent’s SNAP score
Inattention
Hyperactivity
Oppositional
Total

13.69 ± 5.31
13.46 ± 6.92
10.51 ± 6.72
34.16 ± 18.37

N/A N/A

Teacher’s SNAP score
Inattention
Hyperactivity
Oppositional
Total

15.17 ± 6.67
11.74 ± 7.39
7.35 ± 6.59
31.09 ± 18.31

N/A N/A

Note Statistical analyses were performed using the ⊚chi-squared test, * two-
sample t-test
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most favorable results, with an accuracy of 90.24%, sensi-
tivity of 88.85%, specificity of 91.75%, and area under the 
curve of 93.87%. Additionally, we confirmed the results 
of the statistical comparison by utilizing visual observa-
tions to determine whether patients were seated calmly 
or exhibiting noticeable movement. We also compared 
the sensitivity of SNAP scores, CPT, and our proposed 
method in patients with ADHD. The sensitivities of 
SNAP of inattention and hyperactivity scores from par-
ents were 54.84% and 51.61%. The sensitivities of SNAP 
of inattention and hyperactivity scores from teachers 
were 38.71% and 41.94%. The sensitivities of CPT param-
eters were all less than 50.00%. Compared with SNAP 

and CPT, our proposed method had better performance 
in terms of sensitivity with 92.00%.

Figures 3 and 4, and 5 present comparisons of the four 
classification test performance metrics, that is, accuracy, 
sensitivity, specificity, and area under the curve (AUC), 
obtained using six classification models for each move-
ment feature. For downsampling to 6  Hz, “Decision 
Tree + Shannon entropy” exhibited the highest accuracy 
(88.14%), “SVM + Variance” and “Decision Tree + Shan-
non entropy” exhibited the highest sensitivity (100.0%), 
“KNN + Mean” exhibited the highest specificity (96.35%), 
and “SVM + Shannon entropy” exhibited the highest AUC 
(91.46%). For downsampling to 15  Hz, “SVM + Shan-
non entropy” exhibited the highest accuracy (87.20%), 
“SVM + Variance” exhibited the highest sensitivity 
(90.80%), “KNN + Mean” exhibited the highest specific-
ity (98.00%), and “SVM + Shannon entropy” exhibited 
the highest AUC (97.16%). In retaining the original sam-
pling rate of 30 Hz, “Random Forest + Shannon entropy” 
exhibited the highest accuracy (90.24%), “SVM + Vari-
ance” exhibited the highest sensitivity (92.00%), “Random 
Forest + Mean” exhibited the highest specificity (95.45%), 
and “SVM + Shannon entropy” exhibited the highest 
AUC (98.20%).

To identify the sampling rate with the optimal classi-
fication metrics for comparing individuals with ADHD 
and those without, we compared the discriminative abil-
ity of each sampling rate between the ADHD and non-
ADHD groups. Of the three sampling rates and four 
performance indices, the 6  Hz sampling rate ranked 
first in sensitivity, the 15  Hz sampling rate ranked first 

Table 2 Statistical comparison of three movement features 
between ADHD and non-ADHD groups was conducted by 
different sampling rates
Move-
ment 
feature
(units)

Sam-
pling 
rate
(Hz)

ADHD Non-ADHD p Value

Mean
(pixel)

6 1596.2 ± 1076.1 377.5 ± 196.1 < 0.0001
15 625.5 ± 497.1 119.9 ± 65.3 < 0.0001
30 309.2 ± 205.6 55.9 ± 28.5 < 0.0001

Variance
(pixel2)

6 35.9 × 105 ± 46.9 × 105 7.8 × 105 ± 8.4 × 105 0.0002
15 17.6 × 105 ± 22.5 × 105 4.7 × 105 ± 8.4 × 105 0.0014
30 11.5 × 105 ± 15.5 × 105 4.0 × 105 ± 7.1 × 105 0.0065

Shan-
non 
entropy 
(bits)

6 4.1 ± 0.5 2.5 ± 0.7 < 0.0001
15 3.6 ± 0.8 1.6 ± 0.6 < 0.0001
30 2.3 ± 0.5 1.0 ± 0.3 < 0.0001

Fig. 3 Comparisons of classification test performance metrics, specifically, of accuracy, sensitivity, specificity, and area under the curve, were conducted 
by downsampling the images to 6 Hz across classification models in all feature sets
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in specificity, and the 30 Hz sampling rate ranked first in 
accuracy and AUC. The original sampling rate of 30 Hz 
achieved the most favorable results, that is, it ranked first 
for two performance indices, and its sensitivity and spec-
ificity were close to the best results obtained at 6 Hz and 
15 Hz. To identify which movement features could distin-
guish between individuals with ADHD and those without 
at the original sampling rate of 30  Hz, we averaged the 

rankings of all movement features corresponding to each 
classification performance index. The optimal features 
are presented in Table 3. Shannon entropy ranked first in 
accuracy, sensitivity, and AUC, and the mean ranked first 
in specificity. Thus, Shannon entropy was the single fea-
ture that best discriminated between those with ADHD 
and those without. To determine the optimal Shannon 
entropy and original sampling rate of 30 Hz for classifying 

Fig. 5 Comparisons of classification test performance metrics, specifically, of accuracy, sensitivity, specificity, and area under the curve, were conducted 
using the original image sampling rate of 30 Hz across classification models in all feature sets

 

Fig. 4 Comparisons of classification test performance metrics, specifically, of accuracy, sensitivity, specificity, and area under the curve, were conducted 
by downsampling the images to 15 Hz across classification models in all feature sets
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the ADHD and non-ADHD groups, we ranked Shannon 
entropy for each classification performance index across 
six machine learning models. Of the six machine learn-
ing models and four performance indices, the random 
forest ranked first in accuracy, sensitivity, and specificity, 
and the SVM ranked first in AUC. The ranking results are 
presented in Table  4. The Random Forest classification 
model achieved the most favorable results, with an accu-
racy, sensitivity, specificity, and AUC of 90.24%, 88.85%, 
91.75%, and 93.87%, respectively.

Figures 6 and 7, and 8 present comparisons of the SEM 
for four classification test performance metrics, that 

is, accuracy, sensitivity, specificity, and AUC, obtained 
using six classification models for each movement fea-
ture. Note that each boxplot illustrates the SEM for each 
classifier across different movement features. For downs-
ampling to 6 Hz, Shannon entropy exhibited lower vari-
ability compared to the Mean in accuracy and AUC. For 
sensitivity, Shannon entropy exhibited lowest SEM but 
with noticeably higher variability. For specificity, Mean 
achieved the lowest SEM. In contrast, Variance exhibited 
larger error margins and greater variability in specificity, 
as shown in Fig. 6. For downsampling to 15 Hz, Shannon 
entropy exhibited relatively low SEM and variability com-
pared to the Mean in accuracy, sensitivity, and AUC. For 
specificity, Mean exhibited the lowest SEM. In contrast, 
Variance exhibited larger error margins and greater vari-
ability in sensitivity and specificity, as shown in Fig.  7. 
In retaining the original sampling rate of 30  Hz, Shan-
non entropy exhibited relatively low SEM for accuracy, 
sensitivity, and AUC. For specificity, Shannon entropy 
exhibited the lowest SEM variability compared to Mean. 
In contrast, Variance exhibited larger error margins and 
greater variability in four performance metrics, as shown 
in Fig. 8. Thus, Shannon entropy demonstrated the most 
consistent performance across different sampling rates, 
achieving relatively low SEM and variability in accu-
racy, sensitivity, and AUC. Additionally, it exhibited the 
lowest SEM variability in specificity at higher sampling 
rates, further supporting its reliability for distinguishing 
between individuals with ADHD and those without.

Discussion
This study revealed that using the pixel subtraction 
method and Shannon entropy to quantify the movement 
of individuals with and without ADHD can provide an 

Table 3 Averaged ranking of all movement features 
corresponding to each classification performance index by an 
original sampling rate of 30 hz
Features Accuracy 

average rank
Sensitivity 
average rank

Specific-
ity average 
rank

AUC
aver-
age 
rank

Mean 1.8 2.5 1.1 1.8
Variance 3.0 2.3 3.0 3.0
Shannon 
entropy

1.1 1.1 1.8 1.1

Table 4 The ranking of Shannon Entropy for each classification 
performance index between six machine learning models by an 
original sampling rate of 30 hz
Classification models Accuracy Sensitivity Specificity AUC
SVM 2 2 5 1
Random forest 1 1 1 2
Decision tree 4 4 3 5
KNN 6 6 6 6
AdaBoost 3 3 2 4
XGBoost 5 5 3 3

Fig. 6 Comparisons of the SEM for performance metrics, specifically accuracy, sensitivity, specificity, and AUC, were conducted by downsampling the 
images to 6 Hz across classification models in all feature sets
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objective ADHD diagnosis. The Shannon entropy value 
was substantially higher in the ADHD group than in the 
non-ADHD group. The experimental results indicate that 
retaining the original sampling rate of 30  Hz, “Random 
Forest + Shannon entropy” yielded the optimal results, 
with an accuracy, sensitivity, specificity, and AUC of 
90.24%, 88.85%, 91.75%, and 93.87%, respectively. The 
main reason for this excellence was the highly discrimi-
native nature of Shannon entropy extracted from the 
patient movement videos between the ADHD and non-
ADHD groups, resulting in well-trained classification 
models and corresponding superior prediction capabil-
ity. Further analysis demonstrated that Shannon entropy 
achieved the most consistent performance across all three 
sampling rates, with relatively low SEM and variability in 

accuracy, sensitivity, and AUC. Moreover, it exhibited 
the lowest SEM variability in specificity at higher sam-
pling rates, further supporting its reliability for distin-
guishing between the ADHD and non-ADHD groups. 
Therefore, Shannon entropy is a useful and objective 
marker for diagnosing ADHD. Additionally, the move-
ment features significantly differed between the ADHD 
and non-ADHD groups at all three sampling rates. The 
machine learning classification results demonstrate that 
increasing the sampling rate yielded superior discrimina-
tory power. According to the Nyquist–Shannon sampling 
theorem [19], if body movements are contained within a 
frequency of 20 Hz [12], a sampling rate of at least 40 Hz 
is required to capture movement changes. Therefore, 
our classification results are consistent with those of a 

Fig. 8 Comparisons of the SEM for performance metrics, specifically accuracy, sensitivity, specificity, and AUC, were conducted using the original image 
sampling rate of 30 Hz across classification models in all feature sets

 

Fig. 7 Comparisons of the SEM for performance metrics, specifically accuracy, sensitivity, specificity, and AUC, were conducted by downsampling the 
images to 15 Hz across classification models in all feature sets
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previous study on human body movements [12]. In other 
words, we require a higher sampling rate to capture more 
subtle or rapid movement changes. Although a lower 
sampling rate can reduce the cost and time required for 
analysis, it may result in an inability to capture some 
rapid movements.

Because the chair in the consultation room could be 
rotated by patients, body spinning and lower extremity 
movements were the predominant movements. Schworm 
et al. demonstrated that children with ADHD often trail 
their hands across tables, reaching for objects aimlessly 
[20]. The ADHD group also exhibited a higher rate of 
leg and foot movements, such as swinging, tapping, or 
shaking, than did the non-ADHD group. Children with 
ADHD often turn their heads when they shift their atten-
tional focus to a different stimulus [21].The experimental 
results demonstrate that Shannon entropy provided the 
best classification result between the ADHD and non-
ADHD groups. According to previous studies, the move-
ments of children with ADHD include upper and lower 
extremity movements [20, 21]. In the current study, the 
other features (mean and variance), which describe aver-
age movement and pronounced movement, were less 
helpful in distinguishing between children with ADHD 
and those without. This indicates that children with 
ADHD exhibit more irregular and unpredictable move-
ment behavior in the consulting room.

The clinical diagnosis of ADHD depends heavily on the 
professional expertise of doctors and is primarily assessed 
using observation and information provided by parents 
and teachers. This highly subjective diagnostic evaluation 
procedure often leads to inconsistent results. In addi-
tion, the DSM-V criteria used by diagnosing physicians 
to determine whether the child is more or less prone to 
a high degree of movement are subjective. Developing 
an objective method for capturing, identifying, and ana-
lyzing the movement patterns of children with ADHD is 
crucial to reducing the influence of subjectivity in such 
diagnoses. A previous study attempted to develop objec-
tive diagnostic measures to minimize the incidence 
of misdiagnosis of ADHD [22]. Based on the results 
recording the amount of movement in both ADHD and 
non-ADHD children, we detected some significant fea-
tures. Comparing these two groups (ADHD versus non-
ADHD), the results revealed significant differences in 
movement analysis, with the average movement higher in 
the ADHD group. This suggests that movement is one of 
the important features in distinguishing ADHD children 
from non-ADHD children. By review of most studies, 
children with ADHD exhibited more physical movement 
than those without ADHD. Our findings of increased 
movements in children with ADHD are consistent with 
those of that study [22]. Hyperactive children typically 
exhibit increased physical movements and an inability 

to sit still, especially in calm or quiet environments [23]. 
These behaviors are core symptoms of hyperactivity and 
impulsivity. For over a decade, studies have attempted 
to record patient movements objectively. Most studies 
have employed motion capture by using accelerometers 
or infrared devices placed on the body. One study used a 
Kinect camera to analyze the movement of patients and 
identified significant differences in the amount of objec-
tive movement between a group of children with ADHD 
and a control group. The ADHD group in that study had 
higher average movement values for all analyzed joints 
[24]. Another study used video analysis to verify that 
children with ADHD move more than children without 
ADHD when seated [25]. As demonstrated in the pres-
ent study, objective measures with high specificity and 
sensitivity can improve accuracy in identifying quantifi-
able target symptoms. These findings also demonstrate 
that comparing video images of children who may have 
ADHD can assist clinicians in addressing the chal-
lenge posed by the often substantial differences between 
teacher and parent ratings in terms of SNAP IV scores 
for children’s behavior.

Several movement detection tools are available to assist 
physicians in diagnosing ADHD, including accelerom-
eters, actigraphy, infrared recording, and ultra-wideband 
radar. Accelerometers and actigraphy are worn on the 
wrist or ankle and can be used at home or school instead 
of in a laboratory [26]. However, they do not function 
unless attached to the patient’s body, which limits their 
ecological validity. Additionally, only the movement of 
body parts to which sensors have been attached can be 
recorded. Furthermore, accelerometers analyze patient 
movements during normal daily activities and have lim-
ited battery life [27], whereas actigraphy are used to study 
patient sleep efficiency and are limited by a low sampling 
rate [28]. Regarding to infrared, the strength of infrared 
is noncontact without placing any type of sensor in the 
body of the subjects [29]. However, infrared detection 
is easily disrupted by light or other noise. Additionally, 
infrared recording requires the use of special detec-
tion and software equipment. Ultra-wideband radar is 
another noncontact method for recording movements 
that can be used in various situations, such as during a 
test or in a naturalistic setting [30]. The disadvantages 
of ultra-wideband radar are that it must be used in a 
restricted space and can be disrupted by surrounding 
objects. By contrast, the method employed in the present 
study is noncontact and uses video from a regular cam-
era for analysis and the computation complexity is low. 
This method can accurately distinguish between indi-
viduals with and without ADHD following a short obser-
vation period. Additionally, detection can be conducted 
during regular consultations and does not affect normal 
behavior. Nevertheless, the weaknesses of our method 



Page 12 of 13Chiu et al. Journal of Neurodevelopmental Disorders           (2024) 16:71 

are twofold: (1) the detection data may be occluded by 
other human bodies, and (2) the method must be used 
in a restricted space. However, in our consultation room, 
these two shortcomings were overcome through experi-
mental design. The motion data we analyzed were lim-
ited to the red rectangular region defined in Fig. 2. The 
design will minimize the detection data interfered by 
other human bodies during consultations. It will reduce 
unwanted data to be included in our analysis. In addi-
tion, we used Shannon entropy as a classification feature 
between the ADHD and non-ADHD groups. This feature 
could depict the motion characteristics in patients with 
ADHD, such as irregular and unpredictable movement 
behavior in the consulting room. Furthermore, an appro-
priate machine learning model is also important for diag-
nostic discriminability. In the present study, the random 
forest classification model achieved the most favorable 
results. The aforementioned factors could explain that 
our method has better performance compared to exist-
ing efforts to achieve diagnostic discriminability based on 
motion capture.

Our study has some limitations. First, the cohort pri-
marily comprised patients with ADHD-C; thus, our 
results may not be representative of all ADHD subtypes. 
Second, the movements of patients with ADHD in the 
consultation room may be affected by nonpharmacologi-
cal factors, such as food intake on the day of assessment, 
sleep quality before assessment, and familiarity with the 
consultation environment. Future studies should include 
a questionnaire to investigate the relationship between 
these confounding factors and children’s movements. 
Third, the camera position and angle are critical com-
ponents in movement analysis. Varying camera angles 
or positions can affect image quality or even lead to fail-
ure to detect movement, resulting in inaccuracy or bias 
in movement analysis. Future studies should use two or 
more cameras mounted at different locations in the room 
to address this limitation.

Conclusions
The present study primarily included patients with 
ADHD who had received a diagnosis of the ADHD-C 
or ADHD-H subtypes. Our pixel subtraction movement 
quantization analysis of Shannon entropy in outpa-
tient consultation room videos effectively distinguishes 
between children with ADHD and those without. Our 
results also reveal that compared with the non-ADHD 
group, the ADHD group exhibited substantially larger 
values for all movement features. Shannon entropy was 
particularly effective in distinguishing between the move-
ments of patients in the ADHD and non-ADHD groups. 
In conclusion, the proposed machine learning approach 
is a reliable model for objectively determining whether 
a patient is likely to have ADHD. Because most patients 

with ADHD have either hyperactive or combined sub-
types and exhibit symptoms of hyperactivity, our 
approach can aid physicians in making clinical decisions 
regarding ADHD diagnosis.
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