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Abstract
Background Despite the power and promise of early detection and treatment in autism spectrum disorder (ASD), 
early-life biomarkers are limited. An early-life risk biosignature would advance the field’s understanding of ASD 
pathogenies and targets for early diagnosis and intervention. We therefore sought to add to the growing ASD 
biomarker literature and evaluate whether fetal metabolomics are altered in idiopathic ASD.

Methods Banked cord blood plasma samples (N = 36 control, 16 ASD) were analyzed via gas chromatography and 
mass spectrometry (GC-MS). Samples were from babies later diagnosed with idiopathic ASD (non-familial, non-
syndromic) or matched, neurotypical controls. Metabolite set enrichment analysis (MSEA) and biomarker prediction 
were performed (MetaboAnalyst).

Results We detected 76 metabolites in all samples. Of these, 20 metabolites differed significantly between groups: 
10 increased and 10 decreased in ASD samples relative to neurotypical controls (p < 0.05). MSEA revealed significant 
changes in metabolic pathways related to carbohydrate metabolism and glycemic control. Untargeted principle 
components analysis of all metabolites did not reveal group differences, while targeted biomarker assessment (using 
only Fructose 6-phosphate, D-Mannose, and D-Fructose) by a Random Forest algorithm generated an area under the 
curve (AUC) = 0.766 (95% CI: 0.612–0.896) for ASD prediction.

Conclusions Despite a high and increasing prevalence, ASD has no definitive biomarkers or available treatments for 
its core symptoms. ASD’s earliest developmental antecedents remain unclear. We find that fetal plasma metabolomics 
differ with child ASD status, in particular invoking altered carbohydrate metabolism. While prior clinical and 
preclinical work has linked carbohydrate metabolism to ASD, no prior fetal studies have reported these disruptions in 
neonates or fetuses who go on to be diagnosed with ASD. Future work will investigate concordance with maternal 
metabolomics to determine maternal-fetal mechanisms.
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Background
Autism spectrum disorder (ASD) is a significant and 
growing concern in the field of pediatrics. The American 
Academy of Pediatrics recommends developmental sur-
veillance at every health supervision visit. This includes 
screening for ASD during 18- and 24-month well-child 
visits and standardized developmental screening at 9, 
18, and 30 months of age [1]. Despite this high frequency 
of screening in early life, the average age of ASD diag-
nosis remains 4–5 years of age, indicating gaps in early 
detection.

Early detection and intervention have been robustly 
shown to improve long-term outcomes in individu-
als with neurodevelopmental disorders including ASD, 
though these efforts are stymied by a lack of operational 
biomarkers [2]. While there is widespread acknowledg-
ment of the power and promise of such biomarkers [3, 
4], few studies to date have examined biomarkers of an 
eventual ASD diagnosis at the earliest possible timepoint: 
during prenatal life. Prenatal next-generation sequencing 
(NGS) and whole exome sequencing, including fetal cell 
free RNA and DNA assay approaches, have improved the 
detection of genetic anomalies linked to developmental 
disorders, including ASD, allowing for early and precise 
diagnosis and ASD gene discovery [5]. Epigenomic stud-
ies have also emerged as an area of promise: one recent 
study in two high-familial risk prospective cohorts found 
sex-specific DNA methylation differences in the cord 
blood of ASD and typically developing children which 
may reflect differences in fetal brain transcription [6, 7]. 
In one of these cohorts, investigators further revealed 
genome-wide maternal blood transcriptomic changes 
associated with child ASD, honing in on six transcripts 
and co-expressed gene modules related to metabolite 
status and immune, histone modification, and RNA pro-
cessing functions [8]. Finally, proteomic and metabo-
lomic studies have provided important insights into 
ASD-linked environmental exposures. Recent studies 
have reported alterations to the placental proteome in 
a high-familial risk cohort (MARBLES) which are also 
linked to fetal brain development and ASD [9], revealing 
a potential for mid-gestation maternal metabolomics to 
bridge established maternal immune and environmental 
risk factor mechanisms in ASD [10]. Beyond improving 
early ASD detection and diagnosis, such early biomark-
ers have the potential to reveal early mechanisms of ASD 
pathogenesis, which remain largely unclear.

Work in recent decades demonstrates that ASD 
pathoetiology involves a combination of environmental 
and genetic factors [11]. Many environmental exposures 
begin in utero and include pesticide exposure, inflam-
matory insults, diseases of pregnancy (e.g., preeclamp-
sia, gestational diabetes), infection, stress, maternal diet, 
and others. Further evidence suggests that environmental 

factors interact with genetic traits in fetal brain devel-
opment to increase ASD risk [12]. The role of the “first,” 
in utero environment in driving ASD risk remains 
understudied.

Given that environmental contributors to ASD are 
poorly understood, the field requires sensitive, high-
throughput, agnostic approaches for the study of envi-
ronmental exposures or the “exposome.” Metabolomics 
is one such tool, quantifying metabolites, which are 
small molecule (< 1.5 kDA) substrates, intermediates, 
or products of cellular metabolism. In an era of multi-
omics, metabolomics offers the advantages of being more 
sensitive to biological changes than other approaches. 
Gene and protein expression changes are amplified at 
the metabolome level (Lankadurai et al., 2013). Metabo-
lomics is also more predictive of health status than iso-
lated biomarkers [13]. Ultimately, metabolomics offers 
the advantage of providing a final read-out of interactions 
between nucleic acids and proteins.

Here, we assessed cord blood metabolomic differences 
between idiopathic ASD and control pregnancies. We 
hypothesized that differences in cord blood metabolo-
mics in this ASD population might reveal environmental 
mechanisms of prenatal ASD programming. Our results 
reveal altered levels of mono and polysaccharide metabo-
lism and decreased branched chain amino acid metabo-
lism (keto acids) in ASD samples, suggesting a role 
for altered carbohydrate metabolism in prenatal ASD 
programming.

Methods
Participants
A total of 52 cord blood samples were obtained from the 
University of Iowa Perinatal Family Tissue Bank (IRB: 
200910784): 16 from pregnancies resulting in a child later 
diagnosed with ASD and 36 from pregnancies resulting 
in a child without any documented mental, behavioral, 
or neurodevelopmental disorder diagnosis. At the time 
of diagnosis, all children were between the ages of 2 and 
12. Neurotypical controls were confirmed to have no 
neurodevelopmental diagnoses at between 4 and 12 years 
of age. ASD group inclusion criteria included a clinician 
diagnosis of Autistic disorder (ICD-10 code F84.0 or sim-
ilar documentation). Extremely premature (< 28 weeks 
gestation) and extremely low birthweight (< 1,000  g) 
infants were excluded.

Clinical data acquisition
To interrogate clinical data which correspond to bio-
specimens analyzed here, the University of Iowa Inter-
generational Health Knowledgebase (IHK) was utilized. 
The IHK is a clinical research data warehouse which 
contains information from the electronic health record 
(IRB: 202101369) [14]. Clinical data from the IHK (e.g., 
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diagnostic codes) can be linked via an anonymous iden-
tifier to PFTB samples [14]. ASD diagnoses were further 
manually verified by a study author with expertise in neu-
rodevelopmental disorders (SBG).

Sample collection and processing
After obtaining informed consent for participation in the 
University of Iowa Perinatal Family Tissue Bank, umbili-
cal cord blood samples were collected, processed, and 
stored as described previously [15]. Briefly, all samples 
were collected immediately after delivery of the placenta 
into evacuated Citrate Phosphate Dextrose Solution 
tubes (Fenwal Technologies). Cord blood was collected at 
the bedside. After collection, samples were processed for 
plasma, which was aliquoted, snap frozen, and stored at 
− 80 °C for subsequent metabolomic profiling.

Metabolite extraction
To process banked cord blood samples for metabolite 
extraction, plasma samples were first diluted in 18 vol-
umes of ice-cold methanol, acetonitrile, and water (2:2:1 
mixture) containing internal standards (D4-citric acid, 
D4-succinic acid, D8-valine, and U13C-labeled gluta-
mine, glutamic acid, lysine, methionine, serine, trypto-
phan; all from Cambridge Isotope Laboratories). These 
parameters have been shown to be well-suited to plasma 
metabolite extraction [16, 17].

Next, a volume equivalent to the plasma volume was 
removed from the water component of the extraction 
buffer. The resulting extraction mixture was then vor-
texed at room temperature for 10  min, rotated for 12  h 
at -20 °C, and centrifuged at 21,000g for 10 min. Finally, 
75 µl of cleared metabolite extract was transferred to an 
autosampler vial and dried using a SpeedVac vacuum 
container (Thermo).

After drying, metabolite extracts were reconstituted in 
30 µl of 11.4 mg/ml methoxyamine (MOX) in anhydrous 
pyridine. This was vortexed for 5  min then heated to 
60  °C for 1 h before 20 µl of N, O-Bis(trimethylsilyl)tri-
fluoroacetamide (TMS) was added to each sample. This 
final mixture was then vortexed for 1 min and heated to 
60 °C for 30 min.

Gas chromatography–mass spectrometry
The analysis of derivatized samples was performed using 
gas chromatography–mass spectrometry (GC-MS), as 
previously [17]. A 1 µl volume of the derivatized sample 
was introduced into a Trace 1300 GC system (Thermo) 
equipped with a TraceGold TG-5SilMS column 
(Thermo). The GC system was operated under specific 
conditions, including a split ratio of 5:1, a split flow rate 
of 24  µl/minute, a purge flow rate of 5  ml/minute, and 
a carrier mode set to Constant Flow with a carrier flow 
rate of 1.2  ml/minute. Separation was carried out using 

a standard fused silica TraceGold TG-5SilMS column 
(Thermo).

The temperature gradient in the GC oven was pro-
grammed as follows: initiated and maintained at 80 °C for 
3 min, after which it increased at a rate of 20 °C per min-
ute until reaching 280 °C, and then finally held at 280 °C 
for 8 min.

For ion detection, an ISQ 7000 mass spectrometer by 
Thermo was utilized in electron ionization (EI) mode 
with an energy of -70  eV over a time range of 3.90–
21.00 min. Detection employed select ion monitoring. In 
total, 76 total metabolites were detected in both groups 
and across all samples (Supplementary Table 1).

Statistical analyses
TraceFinder 5.1 software (Thermo) was utilized to ana-
lyze raw data. The process of identifying and annotating 
metabolites involved several criteria: a minimum require-
ment of two ions (comprising target and confirmation 
ions), as well as a unique retention time that matched the 
ions and the retention time of a previously established in-
house reference standard. The NOREVA tool was used 
to ensure accurate peak intensities. Samples were pooled 
and analyzed before derivatization at the outset, during, 
and at the end of the analytical run. After NOREVA cor-
rection, data underwent ratiometric normalization using 
TRN normalization. Data were uniformly scaled for visu-
alization purposes. The Grubbs’ test (α = 0.01) identified 
outliers; none were found.

During autoscaling, analyte levels for each participant 
were centered relative to their respective mean values 
and divided by the standard deviation of each analyte. 
A normal distribution was confirmed. Both univariate 
hypothesis testing and multivariate orthogonal partial 
least-squares (OPLS) modeling, as previously described 
[18], were employed. T-tests or chi-square tests were 
used to assess group differences, as appropriate. Metab-
olite set enrichment analyses (MSEA) identified bio-
logically meaningful patterns within the dataset, as 
outlined previously [19]. MSEA analysis can contextual-
ize biomarker features and reveal both shared effects and 
potential new biomarkers, enhancing metabolic disorder 
diagnostics [20]. Briefly, enrichment tests utilized a gen-
eralized linear model to compute a Q statistic, which rep-
resents the average covariance between metabolites and 
the outcome of interest (ASD vs. neurotypical controls). 
Enrichment P values were calculated for enrichment of 
the sample set versus a reference metabolome contain-
ing 73 (of 76 total detected) catalogued metabolites. Only 
sets containing at least two metabolites were considered 
enriched.

All statistical comparisons were performed using 
MetaboAnalyst 5.0 [18]. Figures were generated in or 
adapted from MetaboAnalyst 5.0. Continuous variables 
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are presented as mean ± SEM and were compared using 
Student’s t-tests, as is standard in the field [21–23]. Cat-
egorical variables are expressed as percentages and were 
assessed using Chi-square analysis. P < 0.05 was defined 
as statistically significant.

Results
Cohort characteristics
A summary of cohort demographics and clinical char-
acteristics are shown in Table 1, comparing pregnancies 
resulting in a child with a later ASD diagnosis (“ASD 
pregnancies”) to those resulting in a neurotypical con-
trol child (“Neurotypical pregnancies”). Demographics 
(sex, ethnicity), maternal characteristics [maternal age, 
delivery type, gravida, parity, body mass index (BMI) at 
new OB visit], and delivery outcomes (gestational age, 
birth weight, Apgar scores at 1 and 5  min) did not dif-
fer between groups. Only infant sex was significantly 
different between neurotypical controls and ASD preg-
nancies—male infants were more common among ASD 
pregnancies (77%) than neurotypical pregnancies (42%) 
(p = 0.03). This is representative of the typical male bias 
in ASD [24, 25]. In the ASD group, two mothers had type 
1 diabetes while in the control group one had gestational 
diabetes and one had type 2 diabetes.

Metabolomic differences between ASD and neurotypical 
pregnancies
In ASD pregnancies relative to Neurotypical pregnancies, 
20 metabolites were significantly changed in the cord 
blood (Fig. 1A). Of these, 10 were significantly increased, 

while 10 were significantly decreased (Table 2). Given sex 
differences between the two cohorts, the analyses were 
rerun within controls to determine a baseline sex effect, 
which did not overlap with ASD-related metabolite 
differences.

Hierarchical clustering was used to next generate a 
heatmap depicting these top 20 (by t-test) significantly 
changed metabolites in ASD and neurotypical control 
pregnancies (Fig.  1B). Hierarchical clustering revealed 
broad group differences by Euclidean distances.

Metabolite set enrichment analysis of ASD and 
neurotypical pregnancies
Next, metabolite set enrichment analyses (MSEA) was 
completed to identify biologically meaningful patterns 
of disruption cord blood from ASD versus neurotypical 
control pregnancies (Fig.  1C). Sixteen sets were found 
to be significantly (P < 0.05) enriched (Table 3), with the 
top enriched sets by p-value being fructose and man-
nose degradation, galactose metabolism, and starch and 
sucrose metabolism. Some metabolites recurred across 
more than five sets: Glucose 6-phosphate occurred 
across eight, as did Pyruvic acid, while Fructose-6-phos-
phate recurred across 6 sets. The top-most over-repre-
sented set, Fructose and mannose degradation, included 
Fructose 6-phosphate, D-Mannose, and D-Fructose, 
which were represented across many sets. Glycolysis and 
Gluconeogenesis sets had largely overlapping metabo-
lites (D-Glucose, Fructose 6-phosphate, Pyruvic acid, 
Phosphoenolpyruvic acid, 3-Phosphoglyceric acid, and 
Glucose 6-phosphate), and The Warburg Effect set over-
lapped with both (D-Glucose, Fructose 6-phosphate, 
Pyruvic acid, Phosphoenolpyruvic acid, 3-Phosphogly-
ceric acid, Glucose 6-phosphate). The Fructose and Man-
nose Degradation, Galactose Metabolism, and Starch 
and Sucrose Metabolism sets also shared five metabolites 
(D-Glucose, Fructose 6-phosphate, D-Mannose, D-Fruc-
tose, and Glucose 6-phosphate). Finally, while the two 
inositol-related sets (Inositol Metabolism and Inositol 
Phosphate Metabolism) shared 100% of their annotated 
metabolites (Glucose 6-phosphate and Inositol), only one 
of these metabolites (Glucose 6-phosphate) occurred in 
other sets.

Receiver operating characteristic curve analysis on 
selected features reveals a potential cord blood ASD 
biomarker while principal components analysis reveals no 
metabolome-wide difference
A targeted receiver operating characteristic (ROC) 
analysis was performed on features in the top-most sig-
nificantly enriched metabolite set by GSEA: fructose and 
mannose degradation. This contained three metabolite 
hits: Fructose 6-phosphate, D-Mannose, and D-Fruc-
tose. The area under the curve (AUC), generated via the 

Table 1 Cohort characteristics
Neurotypical 
(n = 36)

ASD (n = 16) P-
value

BMI at New OB visit (kg/
m2)

33.43 ± 10.21 30.38 ± 6.05 0.38

Gestational age (weeks) 38.33 ± 1.43 38.51 ± 1.81 0.73
Birth Weight (g) 3275.11 ± 497.05 3501 ± 816.41 0.29
Ethnicity (% Hispanic or 
Latino)

3% 14% 0.14

Race (% non-white) 3% 21% 0.06
Infant Sex (% male) 42% 77% 0.03
Maternal age (years) 28.18 ± 8.15 24.89 ± 10.62 0.23
APGAR at 1 min (median) 8.00 ± 1.67 8.78 ± 0.44 0.18
APGAR at 5 min (median) 8.67 ± 0.76 8.93 ± 0.27 0.22
Cesarean Delivery (%) 25% 29% 0.80
Gravida 3.03 ± 1.93 3.3 ± 1.95 0.70
Parity 1.42 ± 1.23 1.40 ± 1.71 0.96
Cord blood samples were analyzed from pregnancies resulting in a child 
without any diagnosed neurodevelopmental disorder (neurotypical) or with 
Autism Spectrum Disorder (ASD). Only male sex was significantly different 
between groups (more prevalent in ASD). Values reflect mean ± standard 
deviation unless otherwise noted. Categorical variables were compared via chi-
square. Continuous variables were compared via Student’s t-test. P < 0.05 was 
significant. Bolded findings are statistically significant
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average of 100 cross validations utilizing a random forest 
algorithm relying only on Fructose 6-phosphate, D-Man-
nose, and D-Fructose, was 0.766 (95% CI: 0.612–0.896) 
(Fig. 1D).

Unlike targeted ROC analysis, untargeted multivari-
ate modeling by orthogonal partial least-squares (OPLS) 
revealed no dataset-wide distinction between ASD and 
neurotypical pregnancy metabolomics (Fig.  1E). This 
approach provides a single model for the entirety of the 
metabolomics dataset and efficiently handles multicol-
linear chemometric predictors. OPLS was selected given 
its similar predictive capacity to other PLS approaches 
despite requiring only one predictive component [26]. 
Separation between ASD and control pregnancies was 
poor with this approach, with a high degree over over-
lap between the multivariate normal distribution of each 
class. Q2Y metrics revealed overfitting of the model (Q2: 
-0.0893).

Discussion
Here, we describe one of few published analyses of cord 
blood metabolomics in ASD. Our use of a large, thor-
oughly annotated, longitudinal biobank allowed us to 
examine early-life alterations in feto-placental metabo-
lomic milieu with confidence in eventual child diagnosis 
and other characteristics. We find that changes in fruc-
tose, mannose, galactose, starch and sucrose, and other 
sugar metabolism pathways are enriched in the metabo-
lomics of ASD cord blood plasma. Furthermore, machine 
learning classifiers using only the top-most enriched 
metabolites (Fructose 6-phosphate, D-Mannose, and 
D-Fructose) distinguished ASD cases from neurotypical 
controls well, with an area under the receiver operating 
characteristic (ROC) value of 0.766.

Our findings strongly implicate altered Mannose 
and Fructose (Fructose 6-phosphate, D-Mannose, and 
D-Fructose all increased in ASD samples) and their 
metabolism. By metabolite set enrichment analyses, 

Fig. 1 Comparison of metabolites in neurotypical versus ASD cord blood. A) Volcano plot depicting significantly increased and decreased metabolites 
in cord blood of neurotypical versus ASD pregnancies. P value threshold = 0.05 (by Student’s t-tests); fold change threshold = 1.1 (ASD/Control) to allow 
for comprehensive exploration of the data. B) Hierarchical clustering heatmap depicting the top 20 (by t-test) significantly changed metabolites in neu-
rotypical versus ASD pregnancies. Data are normalized, autoscaled, and Euclidean distances measured. Samples are clustered by the Ward method. C) 
Metabolite set enrichment analysis (MSEA) of ASD versus neurotypical control pregnancies reveals enrichment of select metabolic sets. Analyses utilized 
built-in MSEA library (99 entries). Only the top 15 significantly enriched metabolite sets containing more than one metabolite are displayed. Significant 
enrichment (P < 0.05) was determined relative to a reference metabolome containing 73 detected metabolites. D) Receiver operating characteristic (ROC) 
analysis was built on select features to predict ASD pregnancy. Features were those identified in the top-most significantly enriched metabolite set by 
GSEA (fructose and mannose degradation): Fructose 6-phosphate, D-Mannose, and D-Fructose. The area under the curve (AUC) was generated as the 
average of 100 cross validations utilizing a random forest algorithm. E) Scores plot of multivariate modeling by the orthogonal partial least-squares (OPLS) 
approach reveals highlight overlapping overall metabolome between ASD and neurotypical control pregnancies. Score plot depicts percentage of re-
sponse variable explained by the first predictor only (T score[1]). R2 (percent variance explained by predictor) and Q2 (cross-validation) quality metrics are 
listed on the figure and indicate over-fitting. Variables were standardized (mean-centered, unit-variance scaled) prior to modeling. Ellipses correspond to 
95% of the multivariate normal distribution with sample covariances for each class. Figures modified from MetaboAnalyst
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“fructose and mannose degradation” was the most dis-
rupted metabolite set in ASD pregnancies, and a num-
ber of additional sets reflected similar changes in sugar 
metabolism (e.g., fructose and glucose overlap between 
glycolysis, gluconeogenesis, pentose phosphate path-
way, starch and sucrose metabolism, and amino sugar 
metabolism pathways). The literature offers some con-
text for this key finding: disorders of glucose and fructose 
metabolism (e.g., diabetes), as well as diets enriched for 
these sugars, are linked to neurodevelopmental disor-
ders including ASD. For example, a 2015 study of more 
than 322,000 children in California found that early ges-
tational diabetes (before 26 weeks) raised autism risk 
by 42% [27]. Another study found a positive association 
between maternal Western diet, which is high in sugar, 
and child ASD (ß=11.19, 95% CI: 3.30–19.90), though 
this correlation was attenuated by adjustment for total 
energy intake [28]. Preclinical work also suggests that a 
high-sugar maternal diet causes deficits in rat offspring 
which are suggestive of ASD-like pathology, such as 
impaired behavioral flexibility and redox stress in off-
spring brain [29]. Abnormal fructose metabolism is 
implicated in cell signaling and oxidative stress mecha-
nisms, as well as inflammation [30]. Studies of maternal 
high sugar diet implicate neuroinflammatory and oxida-
tive stress mechanisms in offspring neuroprogramming, 

though additional mechanistic work is needed to more 
precisely clarify mediators and therapeutic targets [31].

Metabolomics in pregnancy is an emerging and prom-
ising frontier [32]. Amniotic fluid metabolomic biomark-
ers boast accuracy as high as 96.3% for the prediction of 
preterm labor [33], with another study reporting a mean 
predictive accuracy of 90% and false negative rate of 
14.2% for preterm birth [33].

Cord blood metabolomics allows for proximal mea-
sures of the fetal metabolome, which may offer insights 
into the programming of developmental disease. While 
some results have been mixed [34, 35], recent studies 
have found that cord blood metabolomics are altered 
relative to maternal and fetal/infant characteristics, for 
example with maternal weight gain in pregnancy and 
obesity [36, 37], infant birth weight [38, 39], preeclamp-
sia [40], infant allergy and asthma [41, 42], intrauter-
ine hypergylcemia [43], intrauterine growth restriction 
[44–47], perinatal asphyxia [47] and hypoxic-ischemic 
encephalopathy [46, 48–51], neonatal macrosomia [52], 
polychlorinated biphenyl exposure [53], diabetes [54], 
and cesarean delivery [55]. Despite this prior work, 

Table 2 Analyses of ASD and neurotypical control pregnancy 
cord blood metabolites reveal significant metabolite changes

Fold 
change 
(FC)

log2(FC) P 
value

Fructose 2.097 1.068 0.0012
Adenine 2.086 1.061 0.0012
Glucose 6-phosphate 1.531 0.615 0.0023
Kynurenine 0.608 -0.717 0.0025
Mannose 1.596 0.674 0.0026
alpha-Ketoisovalerate (KIV) 0.610 -0.712 0.0036
Fructose 6-phosphate 1.516 0.601 0.0036
Phosphoenolpyruvate 1.735 0.795 0.0043
alpha-Keto-beta-Methylvalerate 
(KMV)

0.663 -0.593 0.0052

alpha-Ketoisocaproate (KIC) 0.658 -0.604 0.0086
Alanine 0.728 -0.459 0.0096
Xanthine 1.492 0.577 0.0134
Valine 0.778 -0.362 0.0164
Methylmalonate 0.789 -0.342 0.0204
2-Hydroxybutyrate 0.783 -0.352 0.0212
Cholesterol 0.531 -0.914 0.0241
Uracil 1.326 0.407 0.0247
Isocitrate 1.227 0.295 0.0346
Threonine 0.829 -0.270 0.0377
Citrate 1.240 0.310 0.0499
Metabolites are ranked by P value. Comparisons made by student’s t-test 
(P < 0.05)

Table 3 Metabolite set enrichment analyses (MSEA) revealed 
biologically meaningful metabolite sets disrupted in ASD 
pregnancies. sets containing at least 2 metabolites were 
significantly (P < 0.05) overrepresented by metabolites altered 
in cord blood of ASD versus neurotypical pregnancies. “Hits” 
describe overlapping metabolites between MSEA metabolite 
set and those differentially expressed between ASD and control 
samples. “Total set size” describes the total number of metabolites 
contained within each annotated set (Metaboanalyst)
Metabolite Set Total 

Set 
Size

Hits Q Statistic P 
value

Fructose and Mannose 
Degradation

31 3 17.193 0.0007

Galactose Metabolism 38 6 9.9332 0.0011
Starch and Sucrose Metabolism 31 3 12.519 0.0013
Pentose Phosphate Pathway 29 4 9.6355 0.0022
Inositol Metabolism 30 2 11.853 0.0032
Inositol Phosphate Metabolism 24 2 11.853 0.0032
Glycolysis 23 6 8.23 0.0038
Selenoamino Acid Metabolism 27 2 9.9321 0.0050
Amino Sugar Metabolism 33 6 8.5245 0.0078
Gluconeogenesis 33 8 7.0914 0.0079
Valine, Leucine and Isoleucine 
Degradation

59 9 6.7813 0.0107

Propanoate Metabolism 42 5 7.526 0.0123
Warburg Effect 57 16 5.4267 0.0151
Tryptophan Metabolism 59 8 5.5524 0.0162
Purine Metabolism 73 9 4.9873 0.0202
Steroid Biosynthesis 43 2 6.2884 0.0391
Sets were significantly (P < 0.05) overrepresented by metabolites altered in cord 
blood of ASD versus neurotypical pregnancies
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limited studies have focused on cord blood metabolomics 
and neurodevelopmental outcomes such as ASD.

In the present study, we tested cord blood plasma 
metabolites for differences between newborns later diag-
nosed with idiopathic ASD and typically developing con-
trols. Our study suggests that changes in carbohydrate 
metabolites may be mechanistic harbingers of ASD risk, 
which recent work has found are driven by functional gut 
microbiome architecture. Feto-placental carbohydrate 
metabolism is tightly regulated and is dependent on the 
balance between exogenous glucose from maternal cir-
culation and fetal glucose and lactate utilization [56]. In 
neonatal life, endogenous glucose production and intake 
rapidly supplant placental sources to the infant. Fetal 
growth, which is altered in some subsets of ASD [57], is 
tightly correlated with placental carbohydrate metabo-
lism. Umbilical cord leukocytes from fetal inflammatory 
response syndrome cases exhibit dysregulated carbohy-
drate metabolism machinery [58], further demonstrat-
ing a role for immune-metabolism interactions in these 
changes. Immune activation in fetal life is a long-studied 
risk factor for ASD [59].

Few prior studies have assessed metabolites in ASD 
cord blood. One recent, untargeted metabolomics study 
of the Norwegian Autism Birth Cohort (n = 418) reported 
changes in sugar alcohols in cord blood from male but 
not female ASD pregnancies, and increased glucose-
6-phospate in maternal blood from male ASD pregnan-
cies [60]. We report increased glucose-6-phosphate in 
ASD cord blood plasma. This prior work also reports 
increased predictive performance of cord blood versus 
maternal blood metabolomics for distinguishing ASD 
from neurotypical control samples.

Another recent study in the Markers of Autism risk in 
Babies: Learning Early Signs (MARBLES) cohort (n = 142 
cord blood plasma samples) reported untargeted metab-
olomics in a high-risk population. Mothers in MAR-
BLES are selected on the basis of already having a child 
with an ASD diagnosis, thereby loading this sample for 
increased genetic risk. This study revealed no significant 
negative or positive ASD predictive value of the cord 
blood metabolomics feature set [61]. Not the Norwegian 
Patient Registry [60] study, nor MARBLES, had the same 
explicit focus on non-genetic or idiopathic cases as our 
study, which may explain divergent findings. Genetic 
and syndromic ASD may not reflect the same metabolic 
milieu as the idiopathic cases we utilized here.

Use of cord blood plasma in the present study is an 
advantage given it is reflective of placental, maternal, and 
fetal biologic processes. Particularly in the biomarker dis-
covery phase, it is advantageous to select a sample closest 
to the disease process [62]. Future studies should validate 
our findings in placenta and in maternal plasma, which is 
easier to obtain and may be evaluated early in pregnancy. 

Differences between cord blood, placenta, and mater-
nal plasma metabolomes may also reflect fundamental 
metabolic processes in the feto-placental unit and yield 
additional hypotheses about the metabolomics of ASD in 
early life [32]. Amniotic fluid is another potential target 
for studying fetal metabolomics. Amniotic fluid metabo-
lomics are highly predictive of fetal malformation and 
prematurity [33, 63], and may further reflect metabolic 
processes in fetal life.

Our studies have additional implications for research 
on the exposome in early life. Children’s health may 
benefit from more integrated use of biosampling and 
biomarker detection studies, including in the newborn 
period [64]. The cord blood is a particularly attractive 
sample because it reflects fetal, placental, and maternal 
exposures. Prior cord blood metabolomics studies have 
previously centered on neonatal complications follow-
ing delivery [65]. Longitudinal studies may also identify 
critical exposures and vulnerable periods that have life-
long impacts on individual well-being. The power of this 
approach for understanding long-term programming of 
neurodevelopment, metabolism, cardiovascular disease, 
and other health processes remains mostly untapped.

Our use of highly standardized and timely biospecimen 
collection and storage processes through the University 
of Iowa Perinatal Family Tissue Bank is a distinct advan-
tage of the present study [15]. This active tissue bank 
contains samples from over 6,000 pregnancies collected 
continuously over more than 10 years. Samples collected 
with standardized protocols reflect mixed arterial and 
veinous origins, which somewhat limits interpretation of 
fetal versus placental contributions. Studies find subtle 
but significant differences in umbilical cord venous and 
arterial plasma metabolites, with the main differences 
related to amino acid and energy metabolism [66]. Dif-
ferences between arterial and venous supplies should be 
dissected in future work.

A limitation of the present study and of metabolomics 
more broadly is that plasma and other biofluid metabo-
lomics are highly dynamic and reflect metabolite status 
at only one moment in time. Outputs are impacted by 
immune and dietary conditions, for example. Isolated 
samples from the end of pregnancy are therefore not 
reflective of longer-term dynamics throughout gesta-
tion. Our evaluation of only a subset of curated, tar-
geted metabolites is a significant limitation, as are the 
small sample size and lack of a validation cohort. Larger 
validation studies in more diverse populations are the 
focus of our future and ongoing work. Additionally, our 
GC-MS metabolomic findings should be validated or 
expanded using alternative methods. For example, liq-
uid chromatography-mass spectrometry (LC-MS) may 
be particularly useful for analyzing a broader range of 
metabolites than GC-MS, including larger molecules 
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such as peptides and proteins present in biofluids such as 
urine [67]. Nuclear magnetic resonance (NMR) spectros-
copy offers high reproducibility and the ability to analyze 
complex mixtures such as serum [68], though it has lower 
sensitivity than mass spectrometry-based methods [69]. 
While GC-MS was selected here given its high sensitivity 
and specificity for use in biofluids and complex biologi-
cal matrices [70], as well as high degree of standardized 
(> 50 years of established protocols) [71], other methods 
should also be considered in future work.

Despite limitations, the present study elucidates a 
potential role for altered carbohydrate metabolism in the 
pathogenesis of idiopathic autism spectrum disorder. Our 
use of an idiopathic, non-syndromic or familiar cohort 
allowed for a particular focus on potential environmen-
tal drivers of ASD pathogenesis. Additionally, while 
prior work has focused on isolated biomarkers in ASD 
pathogenesis, our focus was instead on pathways and 
networks of metabolites. Untargeted, multi-omics strate-
gies, for example coupling metabolomics with transcrip-
tomics and genomics, may further improve movement 
towards a systems biology approach towards prenatal 
and obstetrics diagnostics [13, 72]. A wholistic approach 
may improve understandings of how developmental pro-
gramming mechanisms shape genetic-by-environmental 
interactions in ASD pathogenesis. Integration strategies 
using machine learning for disease modeling and classi-
fication provide another, complimentary opportunity for 
advance [73, 74]. Our study demonstrates the potential 
power of machine learning approaches using only select, 
mechanistically-informed features. This has implications 
for the advancement of early screening and detection of 
pediatric disorders broadly.

Conclusions
ASD is one of the most prevalent and fastest grow-
ing neurodevelopmental disorders, impacting pediatric 
patients and their providers in a multitude of ways. Stud-
ies such as this one, which reveal early-life processes in 
ASD pathogenesis and fetal origins, as well as potential 
biomarkers to improve ASD detection, offer hope for 
improving future diagnostic, treatment, and prevention 
strategies. To improve outcomes for children and their 
families, it is imperative that the field move towards 
early detection and diagnosis empowered by robust 
biomarkers.
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